Чтение онлайн

на главную - закладки

Жанры

Сертификация сложных технических систем

Шолом Анатолий

Шрифт:

Визуализацию корреляционного анализа осуществляют с использованием диаграмм рассеяния.

Порядок построения диаграммы рассеяния:

1) определяют показатель качества Y, подлежащий анализу, и параметр X, влияющий на этот показатель;

2) уточняют инженерные аспекты этой связи, т. е. физическую возможность зависимости Y (показателя качества) от параметра X;

3) определяют период наблюдений, на котором собирают данные о значениях X и соответствующих значениях Y. Таким образом, формируются два массива данных: Х1, Х2…., Хп; Y1, Y2,…, Yn.

Для повышения достоверности данных целесообразно, чтобы n >= 20;

4) строят координатную сетку: по горизонтали – ось, на которой откладывают в соответствующем масштабе значения X; по вертикали – значения Y.

Масштабы следует подобрать таким образом, чтобы значения Хi; (i = 1, 2…., n) и значения Yi (i = 1, 2…., n) лежали в одинаковых диапазонах, т. е. точки с координатами (Х/, Y,) были заключены в некотором квадрате;

5) на координатную сетку наносят точки с координатами (Хi, Yi;) (i = 1, 2…., n), при этом возможны следующие основные варианты расположения точек (рис. 5.4):

• на рис. 5.4 а положительная корреляция (связи) между параметром X и показателем качества Y;

• на рис. 5.4 б отрицательная корреляция (связи) между параметром X и показателем качества Y;

• на рис. 5.4 в отсутствует линейная связь между параметром X и показателем Y;

• на рис. 5.4 г отсутствует линейная связь между X и Y, но есть некоторая криволинейная связь между этими характеристиками.

Следует отметить, что чем теснее линейная связь между характеристиками X и Y, тем ближе точки (Хi, Yi) концентрируются около некоторой прямой. Если между фактором X и показателем качества Y связь функциональная (т. е. не случайная), то точки (Хi, Yi) лежат строго на прямой.

Рис. 5.4

Для объективизации этого анализа рекомендуется вычислять коэффициент корреляции r, характеризующий тесноту линейной связи:

Если |г| > 1, это значит, что допущена ошибка в вычислениях, если

, то между Х и Y не выявлена линейная связь.

Если r близок K + 1, это значит, что между фактором Х и показателем Y существует положительная линейная связь, т. е. с увеличением параметра Х увеличивается показатель качества Y; если r близок K – 1, это значит, что между фактором Х и показателем Y существует отрицательная линейная связь, т. е. с увеличением параметра Х уменьшается показатель качества Y.

Для того чтобы убедиться в отсутствии линейной связи между рассматриваемыми факторами, что в рамках математической статистики означает проверку статистической гипотезы r = 0, используют специальный критерий, т. е. проверку условия [10]:

где K (n, 1 – ) – коэффициент, зависящий от объема n выборки и доверительной вероятности (0,5 <1 – < 1).

Коэффициент K (n, 1 – ) называют квантилем распределения

Стьюдента для доверительной вероятности (1 – ) и числа (n – 1) степеней свободы. Этот коэффициент определяют по таблицам [11] с двумя входами n и 1 —.

Например, для

n = 10; = 0,1; K (n, 1 —) = 1,812;

n = 20; = 0,1; K (n, 1 —) = 1,725.

Если справедливо неравенство (5.2), то с достаточно большой вероятностью 1 – > 0,5 можно считать, что коэффициент корреляции равен нулю, т. е. факторы линейно независимы.

Если отвергается гипотеза r = 0, то это значит, что между факторами имеется линейная связь. Для лица, проводящего аудит, это означает возможность проверки только одного фактора, информация о котором может быть получена наиболее просто в ходе проверки.

5.3.4. Сертификация элементов систем качества с использованием индексов воспроизводимости производственных процессов

Сертификация систем качества на соответствие стандартам ИСО серии 9000 предполагает оценку (анализ) точности и стабильности производственных процессов (ПП). Такая оценка может быть выполнена с использованием индексов воспроизводимости ПП, которые получили широкое распространение в практике сертификации технологического оборудования автомобильных корпораций США и Японии.

Индексом воспроизводимости ПП (в предположении, что значение параметра ПП (детали) распределено нормально) называют характеристику Ср:

где – среднее квадратическое отклонение значений параметра детали от среднего значения; D – допустимый разброс (допуск).

В формуле (5.3) предполагается, что среднее значение процесса находится в середине поля допуска. Фактически Ср соотносит допуск на параметр детали с фактическим разбросом. Таким образом, если Ср = 1,0, то ПП можно признать воспроизводимым в том смысле, что ПП обеспечивает установленные требования к качеству детали. Так как на практике значение у оценивается по выборке измерений параметра детали с определенными погрешностями, значение Ср = 1,0 обычно не используется в качестве критического (минимально приемлемого).

Как показывают расчеты вероятности выхода значений параметра детали за границы поля допуска, т. е. вероятности брака, если:

• Ср > 1,67, то имеется существенный запас качества по сравнению с требованиями допуска (возможно сужение поля допуска);

•1,33 < Ср <=1,67 – нормальное состояние процесса (вероятность брака 0,007 %);

1 < Ср <= 1,33 – вероятность брака близка к 0,3 %;

0,67 < Ср <= 1 – вероятность брака близка к 4,5 % (необходимы меры по повышению стабильности и качества процесса);

• Ср <= 0,67 – процесс неконтролируем.

Для практических целей следует указать необходимый объем выборки для принятия решений относительно Ср. В статистическом смысле эта задача может быть сформулирована следующим образом: проверить гипотезу Н0: Cp <= Cp* (процесс невоспроизводим) против альтернативы Н1: Ср > Cp* (процесс воспроизводим).

Если обозначить – риск поставщика, – риск потребителя, то объем выборки N, обеспечивающий непревышение значений и при принятии решений относительно Cp, может быть найден по формуле:

Поделиться:
Популярные книги

Хроники странного королевства. Возвращение (Дилогия)

Панкеева Оксана Петровна
Хроники странного королевства
Фантастика:
фэнтези
9.30
рейтинг книги
Хроники странного королевства. Возвращение (Дилогия)

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Девочка для Генерала. Книга первая

Кистяева Марина
1. Любовь сильных мира сего
Любовные романы:
остросюжетные любовные романы
эро литература
4.67
рейтинг книги
Девочка для Генерала. Книга первая

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Хозяйка забытой усадьбы

Воронцова Александра
5. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка забытой усадьбы

Боец с планеты Земля

Тимофеев Владимир
1. Потерявшийся
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Боец с планеты Земля

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Хозяйка заброшенного поместья

Шнейдер Наталья
1. Хозяйка
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка заброшенного поместья

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII

Правильный попаданец

Дашко Дмитрий Николаевич
1. Мент
Фантастика:
альтернативная история
5.75
рейтинг книги
Правильный попаданец