Чтение онлайн

на главную - закладки

Жанры

Сто лет недосказанности: Квантовая механика для всех в 25 эссе
Шрифт:

Напрашивается проверка с использованием характерного квантового эффекта – прохождения одного электрона через барьер с двумя отверстиями. После прохождения электрон попадает в экран, где оставляет метку в районе своего приземления. До попадания в экран волновая функция электрона выражает комбинацию двух возможностей: пройти через отверстие № 1 или через отверстие № 2. Отсюда следует наблюдаемый эффект: в результате многократного повторения одного и того же опыта по отправке электронов по одному на экране возникает так называемая интерференционная картина – чередующиеся области, в одни из которых электрон приземляется часто, а в другие редко. Эти «часто» и «редко», выражаемые вероятностями, не определяются суммой вероятностей попадания в различные области экрана при прохождении по отдельности через первое и второе отверстия – именно по той причине, что волновая функция содержит две возможности и описываемый ею электрон не имеет свойства проходить через какое-то одно отверстие. Коллапс, случающийся с электроном по дороге достаточно часто и «отъедающий» одну из ветвей волновой функции, изменил бы наблюдаемую картину полос, но и речи нет о том, чтобы зафиксировать какие-то изменения для обсуждаемых ста миллионов лет ожидания. Вместо единичных электронов надо отправлять что-то, содержащее их сразу в большом количестве.

Это

делали, например, для фуллеренов (молекул-многогранников, составленных из десятков атомов углерода), в которых несколько сотен электронов, но это все равно чрезвычайно мало для наших целей. До экспериментов с объектами, которые достаточно часто испытывали бы спонтанный коллапс в ходе путешествия через два отверстия, пока далеко: дело упирается в сложность изоляции их от внешнего мира на время эксперимента – в неотвратимую декогеренцию, если забежать вперед в главу 22. Если серьезно относиться к иногда высказываемым надеждам, что масса объектов в опытах с двумя отверстиями будет ежегодно увеличиваться в 10 раз, то в исторически короткий срок мы доберемся даже до интерференции тихоходок: они послужили бы науке и для проверки гипотезы спонтанного коллапса, и вообще в качестве реальной замены шрёдингеровским кошкам.

Можно попытаться обнаружить в экспериментах и более косвенные проявления спонтанного коллапса, в первую очередь наличие или отсутствие так называемого перегрева. Дело в том, что на языке математики спонтанный коллапс описывается добавлением в уравнение Шрёдингера некоторого шума (он имеет математически строгое определение, но это шум). «Пинки» со стороны этого шума, собственно, и составляют причину происходящего с волновой функцией при спонтанном коллапсе. Да, случаются они нечасто, но все равно дают добавки к полной энергии системы (или даже энергии наблюдаемой Вселенной); достаточно большие такие добавки и составили бы перегрев – где приставка «пере-» указывает на эффект, подлежащий наблюдению.

Экспериментальные усилия по поиску косвенных следов этого шума пока не дают результатов; это значит, что возможный уровень такого перегрева лежит в пределах погрешности, которая имеется в любом эксперименте. Отсюда получаются ограничения на величины, характеризующие спонтанный коллапс – среднее время его ожидания и ширину «пятна». Проводимые сейчас эксперименты подбираются к критической проверке гипотезы спонтанного коллапса – критической в том смысле, что нулевой результат поставил бы крест на этой смелой модификации квантовой механики {90} .

90

Правда, если свидетельства реально происходящего коллапса все же будут обнаружены, закрытыми окажутся все остальные варианты интерпретации – от кьюбизма до теорий со скрытыми параметрами и многомировых концепций.

21

Что портит память друзьям

Вигнер попросил друга понаблюдать на время отпуска за кошкой Шрёдингера, а сам не уехал, а, наоборот, взялся наблюдать за другом. Возник конфликт.

Выходец из Венгрии (как и фон Нейман и еще несколько ярких фигур квантовой эпохи) Вигнер известен далеко не только «историей про друга» – как и Шрёдингер, к слову, вовсе не «историей про кошку». За пределами собственно квантовой механики и математики часто упоминается статья Вигнера «Непостижимая эффективность математики в естественных науках» {91} . А в интересующей нас истории Вигнер задал вопрос о том, что будет, если рядом со шрёдингеровской кошкой, в изоляции от остального мира, окажется человеческое существо. Приключения кошки, как мы помним, начинаются с состояния электрона, приводящего в действие весь сюжет; впрочем, после вовлечения в процесс человека кошка как таковая (вместе с ядом и излишним драматизмом) оказалась не нужна: заключения об исходе измерений над квантовой системой (тем самым электроном) лучше делать не по состоянию животного, а на основе словесного отчета, выражающего содержимое памяти.

91

В оригинале, пожалуй, еще выразительнее: The unreasonable effectiveness of mathematics in the natural sciences. Русский перевод: Вигнер Е. Непостижимая эффективность математики в естественных науках // УФН. 1968. Т. 94. С. 535–546 (инициал «Е» здесь указывает на имя Юджин).

Мысленный эксперимент с другом Вигнера был придуман в самом начале 1960-х гг., но в последнее время пережил вторую молодость как инструмент для анализа свойств квантовой реальности. В современных реалиях, кстати, обычно поддерживается гендерный баланс участников, что по-английски совсем просто, достаточно сказать, что Wigner's friend – это она. Это, кроме всего прочего, еще и удобно, когда надо следить за тем, кто из них что наблюдает или делает: если «он», то Вигнер, а если «она» – то friend. По-русски, однако, «подруга Вигнера» выглядит не совсем нейтральной конструкцией, поэтому пусть Вигнер просит помочь свою коллегу. (Ее могли бы звать, например, Ирэн, но это, пожалуй, излишняя детализация.) «Коллега Вигнера» едва ли станет мемом того же уровня, что и «друг Вигнера», но с возложенным на нее заданием справится так же хорошо.

Коллега находится в лаборатории, где в ее распоряжении имеется вертикально ориентированный прибор Штерна – Герлаха; в главе 7 мы обсуждали, как он измеряет спин электрона. Сейчас в прибор влетает электрон, находящийся в состоянии «спин вверх плюс спин вниз». Коллега ведет себя самым обычным образом – как любой экспериментатор, к чему мы вернемся через мгновение.

Вигнер же совсем не прост. Он изолировал всю лабораторию от внешнего мира и воспринимает и электрон, и прибор, и свою коллегу вместе со всей лабораторией как квантовую систему, а сам не спешит проводить измерения над этой сложной системой. Она, следовательно, развивается во времени согласно уравнению Шрёдингера – которое говорит, что коллега (и вся лаборатория, что я подразумеваю, не всегда оговаривая) пришла в запутанное состояние

Для

краткости здесь не сказано про показания прибора «измерен спин вверх» и «измерен спин вниз», но именно их коллега и видит.

Итак, с точки зрения Вигнера электрон и коллега находятся в запутанном состоянии. Но сама коллега видит перед собой обычный результат взаимодействия электрона с измерительным прибором. Все (от копенгагенцев до эвереттовцев и бомовцев) знают, в чем этот результат состоит, даже если объясняют они это по-разному: она видит ручку прибора (или любой другой способ индикации), указывающую, какое (одно!) значение спина измерено; сам электрон при этом так или иначе сколлапсировал – оказался в состоянии, отвечающем измеренному значению спина (например, «спин вверх»). Внутри лаборатории нет решительно ничего запутанного.

Обсуждая эксперимент за ужином, Вигнер и его коллега поделятся своими впечатлениями о событиях за день: коллега скажет, что в 12:01, сразу после ее измерения, электрон находился в состоянии «спин вверх», и это было зафиксировано в состоянии измерительного прибора, а заодно и в ее памяти. Вигнер же возразит, что в 12:01 электрон, прибор, коллега и вся лаборатория находились в запутанном состоянии. Настоящий Вигнер (а не его реплика, превратившаяся в постоянного героя мысленных экспериментов), собственно говоря, и привлек внимание к наличию двух существенно различных картин реальности – картин с разными фактами {92} , {93} .

92

Начало истории, современный этап развития которой обсуждается в тексте, восходит к двум источникам. В 1939 г. Лондон и Бауэр предложили для понимания квантовой механики идею, что всякое измерение остается незавершенным, пока результат не зафиксирован наблюдателем; в схему измерения, таким образом, вовлекалось знание, приобретаемое наблюдателем. Более того, в математику квантовой механики включалось состояние сознания наблюдателя – практически таким же образом, как в нее включены состояния прибора. Само по себе это должно было повлечь за собой очередное вовлечение в запутывание, если бы не одна отличительная черта сознания: его способность к самопознанию/самоанализу (иногда еще называемая ретроспекцией). В силу этого, как постулировали указанные авторы, сознание способно заявить, что находится «именно в этом» состоянии – чем и определяется единственный вариант того, что «случилось», т. е., иными словами, определяется (пусть и субъективно) коллапс волновой функции. С другой стороны, еще до Лондона и Бауэра фон Нейман подчеркивал, что, проводя «раздел Гайзенберга» между квантовой системой и (не-квантовым) наблюдателем, можно при желании оставить весь измерительный прибор на квантовой стороне, а раздел связать, скажем, с актом попадания сигнала на сетчатку глаза наблюдателя. А можно передвинуть его и еще глубже в нервную систему наблюдателя – поскольку, согласно фон Нейману, верен принцип психофизического параллелизма: субъективное восприятие есть просто последовательность физических процессов, а значит, раздел Гайзенберга в любом случае проходит где-то внутри цепочки физических процессов. Собственно о сознании фон Нейман при этом ничего не заявлял. В 1961 г. Вигнер высказался более радикально, предположив, что коллапс волновой функции происходит именно тогда, когда обладающий сознанием наблюдатель фиксирует результат эксперимента. Коллапс при этом считается реальным физическим процессом; отсюда следует вывод, что сознание воздействует на квантовые явления способом, который сам по себе не описан в квантовой механике. (И это, очевидно, требует отказа от психофизического параллелизма, принципиального для фон Неймана, – что, однако, не помешало некоторому смешению понятий, в результате чего вся концепция стала известна как интерпретация фон Неймана – Вигнера.) Сознательный друг понадобился Вигнеру именно для поддержки такой идеи. (Занятно, что Эверетт, слушавший лекции Вигнера в Принстоне в 1954 г., выступил со своим вариантом «парадокса друга» за несколько лет до самого Вигнера, но сделал из него вывод о неприемлемости копенгагенской интерпретации.) Вигнер впоследствии отказался от идеи «сознательной» интерпретации коллапса – отказался не без влияния трудных для ответа вопросов вроде «Каким же образом сознание, если оно не вполне физическое, вызывает явное изменение в состоянии системы?» и «Каким образом предлагается описывать всю Вселенную как квантовую систему?». Тем не менее различные аспекты этой идеи продолжают эпизодически обсуждаться (в том числе с философских позиций). Современное развитие идеи Вигнера выражается в использовании одного или даже нескольких «друзей Вигнера» для мысленных экспериментов – теоретических построений, призванных продемонстрировать необычные свойства квантовой реальности; тон здесь задала (не всеми одинаково воспринятая) работа Frauchiger D., Renner R. «Quantum theory cannot consistently describe the use of itself,» Nat. Commun. 9 (2018), 3711;Некоторые последующие работы, а также перспективы превратить мысленные эксперименты в настоящие, коротко обсуждаются далее в этой главе.

93

Вслед за предыдущим примечанием, есть повод заодно упомянуть и гипотезу, в известном смысле противоположную первоначальной вигнеровской, хотя количество ее сторонников и исчисляется единицами: речь идет об идее Пенроуза – уже появившегося в примечании 1 к предыдущей главе, – что само наличие сознания зависит от случающегося коллапса волновой функции. Аргументация примерно такова: феномен сознания сначала объявляется не сводимым ни к каким вычислениям (что, между прочим, исключает «сознание машин»). Затем спрашивается, где в природе можно найти что-то заведомо невычислимое. Таковым является коллапс волновой функции, и на этом основании он и объявляется первопричиной сознания. Это построение, впрочем, не выглядит достаточно обоснованным и воспринимается с немалым скепсисом.

Вигнер может привести эти две картины реальности в соответствие, если сам сделает измерение над всей лабораторией – измерение, которое различает между результатами «спин вверх» и «спин вниз», а точнее – между двумя ветвями приведенной выше волновой функции электрона и коллеги. Роль такого измерения для Вигнера может сыграть и сообщение от коллеги, переданное в 12:02 по телефону или через окно лаборатории: «Я получила результат спин вверх». Такое сообщение – вид взаимодействия, вызывающего коллапс волновой функции, которой пользуется Вигнер: она просто приобретет вид «(спин вверх, видит показание спин вверх, знает про спин вверх)», где добавлена часть про самого Вигнера – а по существу и про весь окружающий мир, по которому распространяется знание о результате измерения.

Поделиться:
Популярные книги

Завод 2: назад в СССР

Гуров Валерий Александрович
2. Завод
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Завод 2: назад в СССР

Метка драконов. Княжеский отбор

Максименко Анастасия
Фантастика:
фэнтези
5.50
рейтинг книги
Метка драконов. Княжеский отбор

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

Никчёмная Наследница

Кат Зозо
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Никчёмная Наследница

Неудержимый. Книга XXI

Боярский Андрей
21. Неудержимый
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXI

Контракт на материнство

Вильде Арина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Контракт на материнство

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2