Чтение онлайн

на главную - закладки

Жанры

Сто лет недосказанности: Квантовая механика для всех в 25 эссе
Шрифт:

Конечно, эволюционируя в ходе выполнения алгоритма, волновая функция может представлять собой комбинацию всех состояний: всех 16 в только что приведенном примере четырех кубитов, всех 1024, если кубитов десять, или всех 126765060022822-9401496703205376, если кубитов сто. Перед каждым состоянием в результате исполнения квантовой схемы вычислений появится какое-то внутреннее число, определяющее вероятность при финальном измерении. При желании можно думать, что квантовый компьютер пробует все «ответы», правильный наряду со всеми неправильными, но для правильного алгоритм «выращивает» внутреннее число, дающее самую большую вероятность.

Все это неплохо в принципе, но на практике деликатные физические системы легко выходят из-под контроля. Теоретическая схема работы квантового компьютера исключает обмен информацией с окружающей средой в процессе исполнения алгоритма, но на практике полностью исключить взаимодействие с ней нельзя, и в результате

среда так и норовит внести неконтролируемые изменения в состояния кубитов. Кроме того, какие-то из преобразований, составляющих схему квантовых вычислений (упомянутый выше CNOT и его друзья), могут выполняться неточно. У каждого физического устройства есть показатель надежности, и это никогда не сто процентов. Финальное измерение также может произойти с ошибкой. Наконец, кубит может втянуться в «разговор» (взаимодействие) с соседним кубитом, в результате чего возникнут непредусмотренные изменения в их состоянии.

При этом ошибки, случающиеся в квантовых компьютерах, более разнообразны, чем в обычных. Там сбой может состоять только в неконтролируемой замене 0 на 1 или наоборот. Средства борьбы с этим развиты чрезвычайно хорошо (в том числе, конечно, из-за необходимости постоянного использования в интернете) и сводятся тем или иным образом к передаче избыточной информации. Иллюстрацией может служить самая незамысловатая схема утроения: вместо 0 вы передаете 000, а вместо 1, понятно, 111. Если в таком случае принимающая сторона получила, скажем, сигнал 010, то в предположении, что произошла одна ошибка (а не две, что менее вероятно), его следует воспринимать как 000, т. е. попросту 0 {81} .

81

Это далеко не конец истории про коды, исправляющие ошибки, но она представляет собой отдельный большой предмет, углубляться в который здесь незачем.

Квантовый аналог этой единственной классической ошибки – случайная замена в кубите состояния «А» на состояние «Б» или наоборот. Но кроме этого с кубитом может случиться что-то совсем другое, не имеющее классического аналога: замена состояния «А плюс Б» на «А минус Б» (это два различных состояния, дальнейшая эволюция которых приведет к различным финальным волновым функциям всей системы) {82} .

Мало того, что квантовых ошибок больше, исправление их на первый взгляд кажется невыполнимой задачей. Проблема возникает уже с избыточностью: нельзя создать копию квантового состояния, не разрушив оригинал (теорема о запрете клонирования, упоминавшаяся в предыдущей главе). Поэтому отправить три (да и два) одинаковых состояния вместо одного попросту невозможно. Если этого мало, то есть еще одно обстоятельство, тоже фундаментальное. Нельзя «подглядывать», как идут квантовые вычисления: измерение, выполняемое с целью «проверить, нет ли сбоя», разрушает волновую функцию, и из всех содержавшихся в ней возможностей остается одна – волновая функция коллапсирует, вычислению конец (преждевременный).

82

Или даже появление произвольной фазы перед одним из состояний «А» и «Б»; подробности здесь требуют углубления в комплексные числа и не только.

Борьба с квантовыми ошибками выглядит проигранной еще до того, как она началась. Поэтому неудивительно, что энтузиазм в отношении квантовых вычислений находился на крайне низком уровне до 1995 г., когда был открыт первый квантовый код для исправления ошибок. На помощь пришла запутанность.

Из состояния одного кубита «a А плюс b Б» (с любыми внутренними числами a и b) можно создать состояние трех кубитов «a (А, А, А) плюс b (Б, Б, Б)». Здесь, во-первых, сохранились те же внутренние числа a и b, во-вторых, видна избыточность, а в-третьих, запрета на создание такого состояния нет – оно не представляет собой трехкратное повторение одного и того же состояния первого кубита, избыточность встроена в него более тонким (если угодно, запутанным) образом.

Для этого, разумеется, нужны два дополнительных кубита – посторонних по отношению к тем, на которых в идеальной ситуации предлагается выполнять вычисление. Про них полезно знать, что их начальное состояние, скажем, «А». Применяя преобразования CNOT к основному кубиту и первому вспомогательному, а затем еще раз к основному и второму вспомогательному, мы

из исходного «a А плюс b Б» создаем желаемое «избыточное» состояние «a (А, А, А) плюс b (Б, Б, Б)».

Контрольные измерения затем выполняются таким образом, чтобы отслеживать изменения в состоянии вспомогательных кубитов. Из этих измерений можно сделать заключение о характере случившейся ошибки или о ее отсутствии, и в первом случае определить преобразование (не измерение!), которое надо произвести над «основными» кубитами для ее исправления {83} .

Вопрос сегодняшнего дня – успеваем ли мы бежать впереди накапливающихся ошибок? Для коррекции неизбежных ошибок мы добавляем новые кубиты к тем, которые теоретически необходимы для вычисления, а также выполняем дополнительные преобразования. Они тоже работают не идеально, и требуются дополнительные кубиты для коррекции ошибок, возникающих при коррекции ошибок. Кто кого? Сколько физических кубитов потребуется, чтобы надежно выполнять квантовые вычисления на 1000 идеальных кубитов? Миллион?!

83

Это тоже, разумеется, только начало истории про квантовые коды, исправляющие ошибки, но углубляться в нее здесь нет возможности; идея тем не менее должна быть ясна. Запутанность в действии!

Квантовые вычисления – это остроумный способ использования квантовых законов. Тот факт, что в специальных задачах квантовые компьютеры могут быть радикально эффективнее обычных цифровых компьютеров, можно считать свидетельством глубины квантовых ресурсов. А тот факт, что запустить квантовый компьютер со значительным числом кубитов непросто, – свидетельством беспрецедентных сложностей, с которыми неизменно сталкиваемся макроскопические мы, когда желаем навязывать нужное нам поведение объектам, лежащим в основе вещей {84} .

84

Минимальные подробности в отношении конкретных реализаций кубитов таковы. Сверхпроводящие кубиты реализуются в виде колебательного контура, представляющего собой квантовую колебательную систему с характерными для нее дискретными уровнями энергии, из которых первые два используются как состояния «А» и «Б». Для создания кубитов на захваченных ионах используются электромагнитные ловушки, ограничивающие движение ионов в двух или всех трех направлениях; низкие температуры при этом все равно необходимы. Преобразования, выполняемые над такими кубитами, обеспечиваются лазерными импульсами, которые меняют квантовые состояния ионов. Фотонные кубиты также опираются на низкотемпературные технологии, такие как сверхпроводящие однофотонные детекторы на нанопроволоке (они обеспечивают высокую эффективность обнаружения фотонов); состояния кубита реализуются в том числе как различные поляризации, а необходимые преобразования осуществляются с помощью оптических устройств, таких как светоделители и вращатели фазы. Для управления кубитами, основанными на ядерном магнитном резонансе, используются радиоимпульсы.

Квантовые компьютеры как примеры управления эволюцией квантовых систем могут оказаться критически важными еще и для выяснения фундаментальных свойств квантового мира. Вспомним высказывание Дойча о том, что квантовый компьютер работает сразу в нескольких вселенных (которые, однако, не расходятся навсегда, а снова сливаются, если квантовый компьютер работает без сбоев и, в частности, не делится информацией о своем состоянии с окружающей средой). Воображение не может не будоражить вопрос об искусственном интеллекте высокого уровня, который, возможно, удастся когда-нибудь реализовать в квантовом компьютере: что он расскажет о своем существовании в качестве эволюционирующей волновой функции? Мы еще вернемся к этой теме в главе 21.

19

Что из игры в классики

Индетерминистский квантовый мир и детерминистское уравнение Шрёдингера, взятые вместе, составляют проблему: как соединить одно с другим. Грубое (но, надо признать, удобное) решение – «копенгаген» – состоит в том, чтобы постулировать никак не объясняемый коллапс волновой функции, случающийся в результате (никак не определяемого) измерения; тогда-то и применимо правило Борна. Более изящные и логически состоятельные предложения (главы 11, 12, 13) тоже не лишены каждое своих недостатков.

Поделиться:
Популярные книги

Хозяйка усадьбы, или Графиня поневоле

Рамис Кира
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Хозяйка усадьбы, или Графиня поневоле

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Законы Рода. Том 11

Flow Ascold
11. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 11

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Пленники Раздора

Казакова Екатерина
3. Ходящие в ночи
Фантастика:
фэнтези
9.44
рейтинг книги
Пленники Раздора

Учим английский по-новому. Изучение английского языка с помощью глагольных словосочетаний

Литвинов Павел Петрович
Научно-образовательная:
учебная и научная литература
5.00
рейтинг книги
Учим английский по-новому. Изучение английского языка с помощью глагольных словосочетаний

Возвышение Меркурия. Книга 17

Кронос Александр
17. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 17

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Купец V ранга

Вяч Павел
5. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец V ранга

Законы Рода. Том 7

Flow Ascold
7. Граф Берестьев
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Законы Рода. Том 7

Измена. Избранная для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
3.40
рейтинг книги
Измена. Избранная для дракона

S-T-I-K-S. Пройти через туман

Елисеев Алексей Станиславович
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
7.00
рейтинг книги
S-T-I-K-S. Пройти через туман

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3