Техника и вооружение 2015 05
Шрифт:
9. Иванов А. Артиллерия СССР во Второй мировой войне. – СПб.: Нева, 2003.
10. Коломиец М. Бои у реки Халхин-Гол // Фронтовая иллюстрация. – 2002, №2.
11. Широкорад А.Б. Энциклопедия отечественной артиллерии. – Мн.: Харвест, 2000.
12. Широкорад А.Б. Северные войны России. – М.: ООО "Издательство АСЬ; Мн.: Харвест, 2001.
13. Тяжелые гаубицы финской армии на Интернет-сайте «Jaeger Platoon»ARTILLERY6.htm.
Подготовил к печати С. Федосеев.
Использованы фото И. Павлова, иллюстрации из архивов А. Кириндаса, М. Павлова, М. Грифа, А. Хлопотова.
Вадим Асанин
«Пурга» и
По мере внедрения на флотах противолодочных торпед и другого современного оружия ПЛО совершенствовались и разнообразные меры противодействия их применению – от маневра подводной лодки на уклонение и до использования самоходных имитаторов ПЛ и помехопостановщиков. Однако для инициации этих мер экипажу требовалось потратить некоторое время на анализ обстановки и принятие решения. Не быстро осуществлялась и их техническая реализация. Например, выстреливание имитатора ПЛ, его задействование и отход от лодки.
Исходя из этого и возникла концепция сверхбыстродействующего оружия, при использовании которого экипаж подводной лодки просто не успевал принять меры противодействия. Техническим средством была избрана подводная ракета, т.е. торпеда с ракетным двигателем, по скорости многократно превышавшая обычные винтовые торпеды, но имевшая меньшую дальность. Ранее в нашей стране уже создавались так называемые «реактивные торпеды с ракетным двигателем». Послевоенная авиационная РАТ-52, при дальности хода до 500 м развивавшая скорость 58-68 узлов, выпускалась большой серией и много лет состояла на вооружении морской авиации.
Первоначально большие сомнения вызывала сама совместимость системы самонаведения с ракетным двигателем. Всякий слышавший работу такого двигателя при его наземных огневых стендовых испытаниях глох настолько, что сама мысль о применении каких-либо акустических систем казалось более чем наивной. Поэтому было принято решение использовать акустическую головку подводной ракеты только до включения ракетного двигателя. Соответственно, она стала именоваться системой не самонаведения, а автоприцеливания. Предполагалось, что процесс автоприцеливания будет происходить при вертикальном погружении реактивной торпеды, осуществляемом подобно обычной глубинной бомбе. По завершении этого процесса торпеда устремлялась в атаку и уже «оглохшая» от рева собственного двигателя следовала в упрежденную точку цели, при этом ее система управления работала в автономном режиме.
Подобная атака могла быть успешной только при малой дистанции до лодки: еще до начала автоприцеливания торпеду следовало доставить поближе к лодке. Средством доставки могла быть стартующая с корабля ракета, либо самолет или вертолет. Соответственно, на базе задуманной подводной ракеты началась разработка корабельной противолодочной ракеты «Пурга» и авиационной ракеты «Кондор».
Разработка противолодочной ракеты «Пурга» началась еще в 1958 г. в НИИ-1. Она предназначалась для стрельбы на дальность до 1 км по подводным лодкам, идущим на глубинах от 30 до 400 м со скоростью до 35 узлов. В новом комплексе первоначально предполагалось использовать для пуска ракет РВУ-1000 «Смерч-3». Однако в дальнейшем от этого отказались из-за предъявления более жестких требований к летно-техническим характеристикам ракеты. Дальность стрельбы увеличили до 6 км, при этом оговаривалось поражение подводных лодок, идущих со скоростью до 45-50 узлов.
Октябрьским постановлением 1960 г. работа по созданию реактивного противолодочного снаряда «Пурга», имеющего головную
В процессе разработки выявлялись ранее не учтенные обстоятельства, в результате чего концепцию функционирования оружия основательно пересмотрели. Во-первых, подводная ракета не хотела тонуть. В отличие от простой глубинной бомбы, полностью забитой взрывчаткой, значительные объемы в ракете занимали аппаратура и системы, отличавшиеся малой плотностью компоновки.
Во-вторых, при работе акустической головки на участке поиска с излучением в широком, направленном вниз конусе с углом полураствора 45°, возникала мощная помеха от отражения от дна, на фоне которой терялся полезный сигнал от подводной лодки. В силу сложных явлений переотражения источником помехи стала, что не столь очевидно, и поверхность моря, расположенная противоположно направлению излучаемого сигнала.
В-третьих, не подтвердились показатели точности целеуказания от авиационных или корабельных средств, заложенные в проект с неоправданным оптимизмом. Кроме того, если при первоначально принятой дальности стрельбы «Пурги» в 1 км рассеяние точки приводнения было много меньше ошибки целеуказания, то при новых значениях дальности оно приобрело определяющую роль.
Проведенные летом 1963 г. баллистические пуски (16 – на сухопутном полигоне и 8 – на морском) выявили большие разбросы точки приводнения. Они составляли величину около километра, что 5 раз превышало расчетные значения. Сказывалось то, что на воздушном участке ракета управлялась только по курсу и по крену. Управление по тангажу не осуществлялось, поскольку было бы неэффективным при отсутствии отсечки тяги стартового двигателя. Помимо низкой точности, баллистические пуски показали и недобор дальности – она оказалась ближе к 5 км, а не к заданным 6 км.
Но на три плохие новости пришлась одна хорошая. Реальная жизнь оказалась намного богаче любых псевдотеоретических рассуждений. К немалому изумлению самих разработчиков, при первых испытаниях ракетного двигателя в воде выявилось нетривиальное явление. Продукты сгорания образовывали в кормовой части ракеты газовую каверну, почти наглухо закрывающую сопло двигателя как источник звука.
Это позволило применить ракетный двигатель в режиме пониженной тяги для принудительного вертикального ускоренного погружения «Пурги» на участке поиска продолжительностью до 9 с, на котором ракета развивала скорость около 20 узлов. Дальность действия системы автоприцеливания в режиме поиска увеличили с 200 до 500 м. Не вполне безнадежным было и задействование акустической головки в режиме повышенной тяги двигателя при атаке, осуществляемой со скоростью 52 узла. Правда, сама эта скорость явно не соответствовала 100 узлам, заданным постановлением 1960 г.
Далее вновь начались неприятные сюрпризы. Шум двигателя все-таки достигал системы автоприцеливания – но не по воде, а через элементы конструкции. Они же передавали шумы от работающих приборов, элементов рулевого привода и других систем. Все это затрудняло функционирование системы автоприцеливания на участке поиска, на котором требовалась наивысшая чувствительность.
На участке атаки определяющими становились гидродинамические шумы потока воды. Пришлось несколько раз менять форму обтекателя гидроакустического устройства, доработать конструкцию ракеты для исключения выступающих деталей и шероховатостей поверхности. Внутренней объем акустической головки заполнили пенопластом. Резиновый головной обтекатель прикрыли отстреливаемой прочной насадкой.
Привет из Загса. Милый, ты не потерял кольцо?
Любовные романы:
современные любовные романы
рейтинг книги
Диверсант. Дилогия
Фантастика:
альтернативная история
рейтинг книги
