Изложение системы мира
Шрифт:
Таковы законы передачи движения, подтверждаемые опытом и математически вытекающие из двух фундаментальных законов движения, которые мы изложили во второй главе этой книги. Многие философы пробовали их вывести, рассматривая конечные причины. Декарт, убеждённый, что количество движения без учёта его направления должно всегда оставаться неизменным во вселенной, вывел из этой ложной гипотезы ложные законы передачи движения. Они являются поучительным примером ошибок, которым подвергаются те, кто ищет разгадки законов природы по её вымышленным свойствам.
Когда тело получает импульс в направлении, проходящем через его центр тяжести, все его части двигаются с одинаковой скоростью. Если же это направление проходит в стороне от этого центра, разные части тела получают неодинаковые скорости, и из-за этого неравенства возникает вращение тела вокруг его центра тяжести, в то время как сам этот центр уносится со скоростью, которую он бы принял, если бы направление импульса проходило через центр тяжести. Именно
Импульс, сообщённый однородной сфере в направлении, не проходящем через её центр, заставляет её непрерывно вращаться вокруг диаметра, перпендикулярного плоскости, проходящей через её центр и через направление приложенной силы. Новые силы, увлекающие все её точки, равнодействующая которых проходит через её центр, не изменяют параллельность её оси вращения. Поэтому ось вращения Земли остаётся всегда почти точно параллельной самой себе при обращении вокруг Солнца; при этом не возникает необходимости предполагать, подобно Копернику, существование годичного движения полюсов Земли вокруг полюсов эклиптики.
Если тело имеет произвольную форму, его ось вращения может непрерывно изменяться. Исследование этих изменений при любых силах, действующих на тело, является наиболее интересной проблемой механики твёрдых тел вследствие её связи с предварением равноденствий и с либрацией Луны.10 Разрешая эту проблему, пришли к любопытному и очень полезному результату, а именно, в каждом теле существуют три взаимно перпендикулярные оси, проходящие через его центр тяжести, вокруг которых тело может равномерно и непрерывно вращаться, если оно не подвержено действию внешних сил. Поэтому эти оси названы главными осями вращения. Они обладают тем свойством, что сумма произведений силы каждой молекулы тела на квадрат её расстояния до оси максимальна по отношению к двум из этих осей и минимальна относительно третьей.29 Если представить себе тело вращающимся вокруг оси, слегка наклонённой по отношению к одной из двух первых осей, мгновенная ось вращения тела отклонится от них на очень малую величину. Поэтому вращение будет устойчивым по отношению к этим двум первым осям и не будет устойчивым относительно третьей; малые отклонения от них мгновенной оси вращения вызовут большие колебания тела вокруг третьей оси.
Весомое тело или система тел любой формы, колеблясь относительно неподвижной горизонтальной оси, образуют сложный маятник. В природе нет других маятников. Простые маятники, о которых мы раньше говорили, представляют лишь чисто геометрические абстракции, служащие для упрощения предмета. Легко привести сложные маятники к простому, если у сложного маятника все части неподвижно связаны между собой. Если умножить длину простого маятника, продолжительность колебания которого равна продолжительности колебания сложного маятника, на массу последнего и на расстояние от его центра тяжести до оси качания, произведение будет равно сумме произведений [массы] каждой молекулы сложного маятника на квадрат её расстояния до той же оси. По этому правилу, найденному Гюйгенсом, опыты со сложными маятниками позволили узнать длину простого маятника, отбивающего секунды.
Представим себе маятник, делающий очень малые колебания в одной и той же плоскости, и предположим, что в тот момент, когда он максимально отклонился от вертикали, к нему приложили небольшую силу, перпендикулярную плоскости его качания. Он опишет эллипс вокруг вертикали. Чтобы представить себе его движение, можно вообразить фиктивный маятник, продолжающий свои колебания как и реальный маятник, но без приложенной к нему новой силы, тогда как реальный маятник качается, под воздействием этой силы по обе стороны идеального маятника, как если бы этот фиктивный маятник был неподвижен и вертикален. Таким образом, движение реального маятника является результатом двух простых колебаний, происходящих одновременно и перпендикулярно друг другу.
Этот способ анализа малых колебаний тел может быть распространён на любую систему. Если предположить, что система выведена из состояния равновесия очень малыми импульсами и затем ей сообщены ещё новые импульсы, она будет колебаться по отношению к последовательным состояниям, которые она приняла в силу первых импульсов, таким же образом, каким она колебалась бы по отношению к состоянию
Ясно, что этот способ анализа очень малых движений системы тел может быть распространён даже на жидкости и газы, колебания которых являются результатом простых, одновременно существующих и часто бесчисленных колебаний.
В распространении волн мы имеем наглядный пример сосуществования очень малых колебаний. Если в некоторой точке возбудить поверхность стоячей воды, мы увидим, как формируются и распространяются от этой точки круговые волны. Возбуждая поверхность в другой точке, мы создадим новые волны, которые смешиваются с первыми. Они накладываются на поверхность, возмущённую первыми волнами, как расположились бы на этой поверхности, если бы она была спокойной, так что их можно хорошо отличить в смеси волн. То, что глаз различает в случае волн на воде, ухо распознает в звуках, или колебаниях воздуха, которые распространяются одновременно, не изменяясь, и очень хорошо различимы между собой.
Принцип сосуществования простых колебаний, установленный Даниилом Бернулли, является одним из тех общих результатов, которые пленяют воображение той лёгкостью, с которой они позволяют ему представлять явления и их последовательные изменения. Он легко выводится математически из аналитической теории малых колебаний системы тел. Эти колебания зависят от дифференциальных линейных уравнений, полные интегралы которых представляются суммой частных интегралов. Таким образом, простые колебания накладываются одно на другое и образуют движение системы, как выражающие их частные интегралы складываются вместе, чтобы образовать полный интеграл. Таким способом в явлениях природы интересно прослеживать интеллектуальные истины анализа. Это соответствие, многочисленные примеры которого являет нам система мира, составляет одно из самых больших очарований математического мышления.
Естественно желание привести к одному основному принципу законы движения тел, подобно тому, как законы их равновесия были сведены в едином принципе возможных скоростей. Для этого рассмотрим движение системы тел, воздействующих друг на друга, но не подверженных действию ускоряющих сил. Их скорости изменяются в каждый момент. Но можно представить себе каждую из этих скоростей в некоторый момент составленной из скорости, действующей в следующий момент, и другой скорости, которая должна уничтожиться в начале этого второго момента. Если бы уничтоженная скорость была известна, было бы легко, но закону разложения сил, вывести скорость тел во второй момент; однако известно, что если бы тела двигались только под воздействием этих уничтоженных скоростей, они пришли бы во взаимное равновесие. Таким образом, законы равновесия дадут соотношения утраченных скоростей, и из этих соотношений будет легко вывести оставшиеся скорости и их направления. Так, с помощью анализа бесконечно малых можно получить последовательные изменения движения системы и её положение на любой момент.