Наука, философия и религия в раннем пифагореизме
Шрифт:
С введением в математику доказательства связано появление еще одного ее важного качества — аксиоматичности. В основе дедуктивных построений, которым стремятся придать истинный и непротиворечивый характер, по необходимости должны лежать какие-то положения, принимаемые без доказательств. Развитие математической теории естественным образом побуждало греческих математиков к поискам ее аксиоматической основы. [545] Таким образом, можно утверждать, что систематическое применение доказательства было важнейшим фактором формирования теоретической математики, построенной на аксиоматической основе. Но что же заставило греков сделать математику доказательной, если сама она никак не побуждала их к этому?
545
Начало этого процесса относится еще к концу VI-первой половине V в. См.: van der Waerden. Postulate, 357.
В поисках истоков логического доказательства обычно называют две сферы общественной жизни, в которых оно могло зародиться: во-первых, философию, во-вторых, политическое
546
Szabo. Beginnings, passim. См. также: Burkert, 425; Philip, 200.
Сабо полагает, что Фалес «доказывал» свои теоремы эмпирическим путем, апеллируя к наглядности геометрических чертежей. Действительно Фалес использовал метод наложения (от которого, кстати, не мог полностью избавиться и Евклид) [547] и опирался на факты, истинность которых в ряде случаев наглядна. Но в том-то и дело, что Фалес этой наглядностью не удовлетворился, и его доказательства вовсе не сводились к ее демонстрации. Одно из них, сохранившееся у Аристотеля (An. Prior. 41 b 13-22), [548] показывает нормальную процедуру логических рассуждений.
547
1,4; 1,8. См.: Heath. Euclid I, 225 f.
548
Becker О. Das mathematische Denken der Antike. Gottingen 1966, 38 f; Neuenschwander ?. A. Die ersten vier Bucher der Elemente Euklids, AHES 9 (1973) 353 f. Упоминаемое в «Метафизике» (1051 а 26) доказательство, вероятно, также принадлежит Фалесу.
ABC — равнобедренный треугольник с вершиной в центре круга. Требуется доказать, что углы при его основании равны. ? 1 = ? 2, поскольку оба они являются углами полуокружности; ? 3 = ? 4, поскольку два угла любого сегмента равны между собой. Отняв от равных углов 1 и 2 равные же углы 3 и 4, мы получим, что углы СВА и CAB равны между собой.
Заметим, что для наглядной демонстрации достаточно было перегнуть пополам папирусный чертеж, однако доказательство Фалеса пошло совсем другим путем.
О дедуктивном характере, по крайней мере, части математических выводов Фалеса свидетельствует и Евдем. В одном случае он говорит о доказательстве теоремы, в другом — что она была «найдена» Фалесом, в третьем — что тот не дал научного доказательства. У него же (fr. 133) мы читаем: «Одному Фалес учил более абстрактным образом (?????????????), другому — более чувственным, наглядным (??????????????)».
Взглянем теперь, каков был уровень математики вскоре после 480-440 гг., на которые падает деятельность Парменида и Зенона. Известно, что Демокриту принадлежала книга ???? ?????? ??????? ??? ?????? (D.L. ??,47), следовательно, несоизмеримые отрезки были уже открыты. Гиппократ Хиосский (ок. 440 г.) занимался проблемой удвоения куба, которой должна была предшествовать соответствующая проблема в планиметрии — удвоение квадрата, тесно связанная с открытием несоизмеримости. Из фрагмента Гиппократа о квадратуре луночек (Eud. fr. 140) можно заключить, что он знал немалую часть положений I—IV книг Евклида. [549] Ясно также, что они были доказаны еще до него, ибо строгость доказательств самого Гиппократа была оправдана только в том случае, если положения, на которые он опирался, имели ту же логическую форму и завершенность, что и его собственные. Гиппократу же Евдем приписывает первые «Начала» (fr. 133), в которых известные в то время теоремы и проблемы были, по всей вероятности, сведены воедино и выстроены в логической последовательности. Все это демонстрирует такую зрелость тогдашней математики, которую нельзя объяснить, полагая, что дедуктивный метод проник в нее из философии только в конце первой половины V в.
549
Van der Waerden. Science, 135.
Согласно убедительной реконструкции ван дер Вардена, «Началам» Гиппократа предшествовал пифагорейский учебник математики, содержавший основу первых четырех книг Евклида. [550] Таким образом, мы вплотную подходим к пифагорейской математике начала V в., откуда Парменид и Зенон могли почерпнуть идею дедуктивного доказательства — ведь согласно традиции, учителем Парменида был пифагореец Аминий (28 А 1). Все это позволяет нам с полным основанием присоединиться к выводу,
550
Van der Waerden. Postulate, 343 ff. Об этом писали и раньше: Tannery. Geomerie, 81; Rey A. Les mathematiques en Grece au milieu du Ve siecle. Paris 1935, 58 ff. См. также: Heath. Mathematics I, 165 ff. Такая реконструкция подтверждается и историческими свидетельствами о близости Гиппократа к пифагорейцам (42 А 5; Iam. Comm. math, sc., p. 78.1).
551
Gomperz. Griechische Denker, 139. См. также: Heiberg I. L. Naturwissenschaften und Mathematik im klassischen Altertum. Leipzig 1912, 10; Burnet, 69; Rey: Jeunesse, 191, 202 f; Reidemeister K. Das exakte Denken der Griechen. Leipzig 1949, 10; Cherniss. Characteristics, 336; Taran L. Parmenides. Princeton 1965, 4.
В истории науки можно найти множество примеров того, как одна научная отрасль заимствует методы, оказавшиеся успешными в других областях знания. Но никто не будет перенимать метод, если его применение не дало ощутимых результатов на материале той области, где он возник. Между тем дедуктивное доказательство в философии элеатов, да и вообще в философии, отнюдь не обладает такой логической убедительностью и неопровержимостью, как в математике. [552] Ни Пармениду, ни Зенону не удалось, собственно, ничего доказать, они лишь пытались это сделать. Уже их младшие современники атомисты отвергают идею о том, что небытия (т. е. пустоты — ?????) нет: их космос состоит именно из пустоты и движущихся в ней атомов. Не имели успеха, да и не могли иметь, и попытки Зенона опровергнуть возможность движения и множественности, хотя поднятые им проблемы во многом стимулировали развитие философии. Влияние элеатов на последующих философов объясняется глубиной и смелостью их мысли, а не дедуктивными построениями. Разве не были восприняты некоторые идеи Гераклита, стиль рассуждений которого очень далек от доказательности? Словом, после сравнения весьма скромных успехов дедуктивного метода в философии с тем, что он дал математике, вопрос «у кого он был заимствован?» кажется риторическим. [553]
552
Зайцев. Культурный переворот, 182 сл.
553
Убедительную критику тезиса Сабо см.: Knorr W. R. On the Early History of Axiomatics: The Interaction of Mathematics and Philosophy in Greek Antiquity, J. Hintikka, ed. Theory Change, Ancient Axiomatics and Galileo Methodology. V. I. Dordrecht 1981, 145 ff.
Не более убедительна и гипотеза, связывающая зарождение дедуктивного доказательства с красноречием, политическим или судебным. Дело даже не в том, что начало риторики принято относить ко второй трети V в., а свое полное развитие она получила еще позже, — в конце концов, греки могли аргументированно излагать свои взгляды и во времена Фалеса. Но там, где речь идет о жизненных интересах, логические аргументы не могут иметь решающей силы — а именно с этой ситуацией мы сталкиваемся в народном собрании и в суде. [554] В то время как греческая математика отталкивалась в своих доказательствах от вещей очевидных и всеми признаваемых истинными, для политической и судебной аргументации такой общей основы нет. Хорошо известно, что в Афинах один и тот же человек часто писал убедительные речи pro и contra, а обвиняемые в тяжких преступлениях приводили в суд жену и детей, больше надеясь смягчить судей их несчастным видом и плачем, чем своими аргументами. Трудно представить себе, чтобы в этой атмосфере могло зародиться стремление строго следовать фактам и ни в чем не грешить против логики.
554
Зайцев. Культурный переворот, 185.
Итак, едва ли можно сомневаться в том, что математика не заимствовала дедуктивное доказательство у философии или риторики, — оно зародилось в ней самой. В то же время дедуктивный метод, в отличие от просто логических рассуждений, не является чем-то внутренне присущим обращению с числами и фигурами: на Древнем Востоке (включая Индию и Китай) математика развивалась без него. Следовательно, пытаясь ответить на вопрос, почему Фалес стал искать дедуктивное доказательство простых математических фактов, мы вынуждены будем обратиться к причинам, внешним по отношению к математике.
Наиболее убедительный ответ на этот вопрос предлагает, на наш взгляд, концепция греческого культурного переворота, развитая Зайцевым. Одно из ее центральных положений состоит в том, что в Греции VIII-V вв. в силу специфических исторических условий впервые в истории человечества получили общественное одобрение все формы творчества, все виды продуктивной духовной деятельности, в том числе и лишенные непосредственного утилитарного значения. [555] Только в такой атмосфере Фалес, влиятельный и богатый человек, мог, не будучи профессионалом (какими были египетские и вавилонские писцы), взяться за доказательство того, что диаметр делит круг пополам. Более того, он не просто взялся, а приобрел на этом поприще общественное признание: традиция сохранила его славу как математика и донесла до нас суть теорем, которыми он занимался. Значит, общественная и культурная атмосфера той эпохи поощряла авторов даже таких открытий, которые не имели практической ценности, — тем самым создавались мощные стимулы для новых поисков в этой области.
555
Там же, 117 сл.