Наука, философия и религия в раннем пифагореизме
Шрифт:
Основные ее положения не попали в собрание Евклида. Они даются в популярной форме в трудах поздних авторов: Никомаха (Intr. arith. I, 7-11, 13-16, 17) и Теона Смирнского (Ехр., р. 26-42), а также в комментариях Ямвлиха к Никомаху. Никомах не приводит в своей книге доказательств, однако они, по всей видимости, содержались в том материале, который он использовал и к которому практически ничего не добавил. Это следует хотя бы из предложений, совпадающих с Евклидом: у последнего доказательства есть, а у Никомаха они опущены, потому что он писал для публики, которая ими не интересовалась. Если Пифагор строго доказывал все элементарные положения о четных и нечетных числах, то и теорию фигурных чисел он должен был строить на дедуктивной основе. Весьма правдоподобную реконструкцию этой теории приводит Кнорр, хотя сам он и сомневается, чтобы пифагорейцы строили ее столь же строго аксиоматически,
587
Knorr, 142 ff.
Требуется доказать, что любое прямоугольное число — это удвоенное треугольное число. По определению, прямоугольное число — это сумма ряда четных чисел начиная с двух, а треугольное число — это сумма ряда натуральных чисел начиная с единицы. Поскольку последовательный ряд четных чисел представляет собой удвоение ряда натуральных чисел, очевидно, что прямоугольное число является удвоенным треугольным числом.
Доказательство легко иллюстрируется при помощи псефов:
От исследования треугольных и квадратных чисел можно перейти к стереометрической задаче и попытаться построить тело, ограниченное равносторонними треугольниками и квадратами, — в этом случае мы получим пирамиду и куб. При исследовании свойств квадратных чисел был, вероятнее всего, найден и метод определения пифагоровых троек (начиная с нечетного числа). [588] Реконструкция его выглядит следующим образом.
Прибавляя к квадрату гномон, мы получаем следующий квадрат, следовательно, нужно найти такой гномон, который сам бы был квадратным числом.
588
Allman. Op.cit, 31 f; Heath. Euclid I, 356 ff; von Fritz. Discovery, 252; van der Waerden. Science, 99. Метод построения прямоугольного треугольника, начиная с четного числа, Герон приписывает Платону (Geom. 9, р. 219), а Боэций — Архиту (Geom., р. 408), которому он, вероятно, и принадлежал.
Выше мы цитировали Ямвлиха, который приписывал Пифагору открытие дружественных чисел, каждое из которых равно сумме делителей другого. Хотя в целом Ямвлих — ненадежный источник, в данном случае у нас как будто нет оснований для сомнения. Другое дело, если мы обратимся к родственной задаче — совершенным числам, которые равны сумме собственных делителей, например: 1 + 2 + 3 = 6 или 1 + 2 + 4 + 7 + 14 = 28.
Совершенные числа рассматриваются у Никомаха (Intr. arith. 1,16), а также у Теона Смирнского (Ехр., р. 45.9 ff) и Ямвлиха (In Nic, р. 32.20 f). Никомах дает общее правило их нахождения: если сумма чисел геометрического ряда будет простым числом, то, умножив ее на последний член ряда, мы получим совершенное число (Intr. arith., 1,16.1-4). Доказательство этого правила у Никомаха, как обычно, отсутствует, но оно сохранилось у Евклида (1Х,36).
Многие историки математики связывали совершенные числа либо непосредственно с Пифагором, либо с ранними пифагорейцами. [589] Однако Буркерт отрицает это, полагая, что совершенные числа были открыты не ранее второй половины IV в. [590] Действительно, впервые совершенные числа встречаются у Евклида, пифагорейцы же, по свидетельству Аристотеля, называли совершенным число 10 (Met. 1084 а 32 f), а не 6 или 28. Ничего не сказано о них и во фрагменте Спевсиппа, хотя простые числа здесь упомянуты (fr. 28).
589
Heath. Mathematics I, 74; Becker. Lehre, 134 f; van der Waerden. Science, 97.
590
Burkert, 431 ff.
При отсутствии прямых свидетельств было бы опрометчивым настаивать на раннепифагорейском
591
Becker. Lehre, 134 ff; Denken, 49 f; van der Waerden, 399 f.
Рассматривая математические занятия Пифагора, нельзя не заметить в них преобладания арифметической части над геометрической. [592] Такой перевес едва ли объясним лишь состоянием наших источников — его подтверждает и ряд исторических свидетельств. Диоген Лаэрций (опираясь, скорее всего, на книгу историка конца IV в. Антиклида) писал, что Пифагор больше всего внимания уделил «арифметической стороне геометрии» (VIII,11). В этом же направлении ведут нас свидетельства Аристоксена (fr. 23) и Аристотеля (fr. 191), подчеркивавших занятия Пифагора числами. Тем не менее, весьма вероятно, что Пифагору принадлежат еще некоторые теоремы первых четырех книг Евклида, пусть даже данных об этом и не сохранилось. Представленный выше перечень его открытий в математике нельзя, естественно, считать исчерпывающим.
592
Это отмечают, в частности: Michel Р.-Н. Les nombres figures dans Varithmetique pythagoricienne. Paris 1958, 5 f; Knorr, 132 ff.
С другой стороны, нас не должна удивлять сравнительная немногочисленность математических открытий Пифагора. Греки часто писали о математически окрашенной философии Пифагора, но почти никогда не рассматривали его как математика par excellence, и прежде всего потому, что он таковым не был. Среди самых разнообразных сфер деятельности, в которых проявился его талант, — политика, религия, философия, наука — математика по самой сути вещей не должна была занимать ведущее положение. Можно предполагать, что уже первые «профессиональные» математики — Гиппократ, Феодор, Теэтет или Евдокс — занимались этой наукой систематически и с полной отдачей духовной энергии. Но была ли для Пифагора математика важнее его политической деятельности и религиозного учения?
Для того чтобы дать сбалансированную оценку роли Пифагора в развитии математики, следует рассматривать его в реальной исторической перспективе и сравнивать не с Архитом или Евдоксом, а с его современником Фалесом, для которого математика также не была основной сферой приложения интеллектуальных сил. При таком сравнении можно с полным основанием говорить о новом этапе греческой математики, начавшемся с Пифагора.
Основа математики — дедуктивный метод — был применен в ней впервые Фалесом, причем прилагался он к фактам, истинность которых наглядна, а зачастую даже самоочевидна, например: диаметр делит круг пополам. Однако Фалес этой наглядностью не удовлетворился, и его доказательства вовсе не сводятся к ее демонстрации. Те из них, которые дошли до нас (Arist. An. pr. 41 b 13-22; Met. 1051 a 26 f), показывают нормальную процедуру логических рассуждений.
Теорема Пифагора не обладает такой наглядностью, как теоремы Фалеса, и является, следовательно, важным шагом вперед. Неоднократно отмечавшуюся [593] тенденцию раннегреческой математики перенести центр тяжести с наглядности геометрического построения (зафиксированного, в частности, в таких терминах, как ??????? и ????????) на логическое доказательство следует связывать именно с Пифагором. Ямвлих и Прокл единодушно подчеркивают более абстрактный характер геометрии Пифагора по сравнению с Фалесом, что должно хотя бы в какой-то степени отражать текст Евдема. Во всяком случае, у Евдема сказано, что Фалес некоторые вещи доказывал ?????????????, другие же — ?????????????? (fr. 133).
593
Reidemeister. Op.cit., 51 f; von Fritz. Grundprobleme, 419.