Наука, философия и религия в раннем пифагореизме
Шрифт:
Несколько забегая вперед, отметим, что такую же картину мы наблюдаем и в гармонике, и в астрономии. С последней, правда, дело обстоит несколько сложнее, однако и здесь можно показать, что разногласия источников проистекают из-за естественных искажений, с которыми мы сталкиваемся в тысячах других случаев, а не в силу особого характера пифагорейской школы.
Вернемся теперь к тому, о чем уже упоминалось выше: к тесной взаимосвязи всех математических открытий Пифагора. Конечно, сама по себе она не является прочным основанием для реконструкции: хорошо известно, что решения двух логически связанных проблем могут отстоять друг от друга на многие десятилетия. И все же эта взаимосвязь еще раз подтверждает достоверность собранных выше свидетельств.
Одним из важных звеньев между арифметикой, геометрией и гармоникой была теория пропорций. [577] Пифагору, безусловно,
577
Allman. Op.cit., 48 f; Szabo. Beginnings, 99 ff; Teoria, 136 ff.
578
Van der Waerden. Science, 95. 83См. ниже, IV,3.2.
579
Там же.
Интересное подтверждение принадлежности Пифагору теории пропорций нашел Г. Френкель. [580] Он показал, что некоторые идеи Гераклита выражены в форме геометрической пропорции, например: бог/человек = человек/ребенок (22 В 79), бог/человек = человек/обезьяна (22 В 82-83). Френкель резонно предположил, что Гераклит не сам нашел геометрическую пропорцию, а воспринял ее у ранних пифагорейцев.
Арифметическую теорию пропорций, приложимую к соизмеримым величинам, Пифагор, скорее всего, использовал и при доказательстве своей знаменитой теоремы. [581] Ход ее, согласно реконструкции Хита, таков. Исходя из того, что в подобных треугольниках ABC, ABD и A CD стороны пропорциональны, мы получаем следующие равенства:
580
Fraenkel. Op.cit.
581
Heath. Mathematics I, 147 f; Euclid I, 353 f; Neuensch wander. Erste vier Bucher, 369; van der Waerden, 359. 87Reidemeister. Op.cit., 31 f; Knorr, 138; van der Waerden, 396 f.
Складывая их, мы получаем: АВ2+АС2 = BC(BD + DC), или АВ2+ AC2 = DC2.
Следующий раздел пифагоровой арифметики — это учение о четном и нечетном, ставшее первым образцом теории чисел. Как считал Беккер, а вслед за ним большинство историков греческой математики,87 оно сохранилось у Евклида почти в неизменном виде (IX,21-34). Приведем для примера первые пять положений этого учения (в сокращенной форме):
21. Сумма четных чисел будет четной;
22. Сумма четного количества нечетных чисел будет четной;
23. Сумма нечетного количества нечетных чисел будет нечетной;
24. Четное число минус четное число есть четное;
25. Четное число минус нечетное число есть нечетное. Доказательства этих предложений опираются на определения
VII книги и строго логически следуют друг за другом. Хотя Евклид иногда представлял числа в виде отрезков (впрочем, это было скорее исключением, чем правилом), а пифагорейцы пользовались счетными камешками (?????), суть дела от этого не меняется. Беккер, а еще более подробно Кнорр демонстрируют, что сохраненные Евклидом доказательства (а не только сами предложения) легко иллюстрируются при помощи псефов. [582]
582
Becker. Lehre, 538; Knorr, 141 f.
Абсолютно неправдоподобно, чтобы Пифагор выдвигал данные предложения без доказательств, которые были добавлены кем-то позднее: сами предложения в большинстве своем очевидны любому, кто знаком с элементарными вычислениями. Аристоксен или Аристотель, говоря о пифагоровой арифметике, едва ли ставили бы ему в заслугу
583
Szabo. Beginnings, 247.
Обратившись к математической стороне проблемы, следует признать справедливость выводов Беккера, полагавшего, что все учение о четном и нечетном следует рассматривать еп bloc. (Отмеченные им незначительные изменения не касались предложений 30-31, 33-34.) Предложения, доказываемые от противного, совершенно естественно следуют из доказываемых прямым образом, не отличаясь от них по сложности. Так, например, для доказательства предложений 33-34 не требуется ничего, кроме определений 8-9 седьмой книги. Было бы крайне странно полагать, что первоначальное прямое доказательство было впоследствии заменено косвенным: греческая математика систематически избегала подобных операций. Словом, все говорит за то, что это учение дошло до нас в первоначальном виде.
Отсюда следуют два важных вывода: 1) наглядность математических фактов и их дедуктивное доказательство вовсе не находятся в непримиримом противоречии, как это стремился представить Сабо; 2) доказательство от противного родилось внутри математики, причем на самом раннем ее этапе, [584] и лишь затем элеаты попытались применить его в философии.
Другой пример очень раннего применения косвенного доказательства — теорема о равенстве сторон треугольника, стягивающих равные углы (Eucl. 1,6), обратная доказанной Фалесом теореме о равенстве углов в равнобедренном треугольнике. Она относится к реконструированному ван дер Варденом раннепифагорейскому математическому компендию и была, вероятно, доказана либо в поколении Пифагора, либо в следующем за ним. [585]
584
Ван дер Варден, хотя и не связывает с Пифагором учение о четном и нечетном, датирует его около 500 г. (van der Waerden, 392). Беккер высказывался более осторожно: первая половина V в. (Becker. Grundlagen, 38).
585
Зайцев. Культурный переворот, 186 сл.
Вторым связующим звеном между геометрией и арифметикой была теория фигурных чисел (треугольных, квадратных, прямоугольных и т.д.). Хотя до нас не дошло прямых свидетельств, относящих ее к Пифагору, в пользу его авторства говорит целый ряд аргументов.
Построение фигурных чисел с помощью гномона (угольника) представляет собой суммирование простых арифметических рядов, например, четных или нечетных чисел.
1 + 3 + 5 + ... + (2n - 1) = n2 квадратное число
2 + 4 + 6 + ... + 2n = n(n + 1) прямоугольное число
По своему характеру фигурные числа явно принадлежат к той же раннепифагорейской «псефической» арифметике, что и теория четных и нечетных чисел. Аристотель писал о тех, кто «приводит числа к форме треугольника и квадрата» (Met 1092 а 13), имея в виду, скорее всего, ранних пифагорейцев. Спевсипп в своем трактате «О пифагорейских числах» прямо называет некоторые из них «многоугольными» (fr. 28). В то же время очевидно, что теория фигурных чисел предшествует возникшим в первой половине V в. задачам на приложение площадей, которые также решаются с помощью гномона. Наконец, принято считать, что метод определения пифагоровых троек, который приписывают Пифагору Герои и Прокл, был найден им как раз с помощью построения квадратных чисел. Таким образом, у нас есть достаточно оснований, чтобы присоединиться к тем, кто считает Пифагора автором этой теории. [586]
586
Allman. Op.cit., 31 f; Heath. Mathematics I, 76; van der Waerden. Science, 98 f.