Наука, философия и религия в раннем пифагореизме
Шрифт:
Первое, очень краткое упоминание об открытии Пифагора содержится у Ксенократа. Его слова цитирует некий Гераклид (вряд ли Гераклид Понтийский), которого в свою очередь цитирует Пор-фирий. «Пифагор, — говорит Ксенократ, — открыл, что и музыкальные интервалы возникают не без участия числа, ибо они есть соотношение одного количества с другим. Затем он исследовал, при каких обстоятельствах интервалы бывают созвучными и несозвучными и как вообще возникает все гармоническое и негармоническое» (fr. 9). [693] Хотя в данном фрагменте не говорится, как Пифагор пришел к своему открытию и с помощью каких методов он исследовал музыкальные интервалы, [694] ничто не противоречит предположению, что о его экспериментах мог упоминать уже сам Ксенократ. [695]
693
После длительной дискуссии вокруг этого фрагмента (см.: Heinze R. Xenokrates. Leipzig 1892, 5 ff; Schonberger P. L. Studien zum I. Buch der Harmonik des Claudios Ptolemaeus. Prog. Metten 1914, 113 ff; During I. Ptolemaios und Porphyrios uber die Musik. Goteborg 1934, 154 ff; Guthrie I, 222 f; Philip, 125; Burkert, 64, 380 ff; Levin F. ????? and ????? in the Harmonika of Klaudios Ptolemaios, Hermes 108 [1986] 207 f; Barker. Writings, 9, 30, ср. 235 п. 113) его принадлежность Ксенократу можно считать доказанной. Буркерт предпочитает относить к Ксенократу только первое предложение данного
694
Какие именно интервалы имел в виду Ксенократ, уточняет фрагмент Евдема, в котором он, говоря о пифагорейцах, отмечает: «а также и отношения трех созвучий — кварты, квинты и октавы — лежат в пределах первых девяти чисел. Ведь сумма 2, 3 и 4 равна 9» (fr. 142).
695
Levin. Harmonika, 208.
Первое развернутое описание эксперимента Пифагора мы находим в трактате Гауденция (III в. н.э.). Согласно Гауденцию, Пифагор сделал свое открытие с помощью монохорда, т. е. инструмента с одной струной, натянутой на линейку с размеченными делениями, общим числом 12. Заставив звучать струну, а затем ее половину, он обнаружил, что они звучат созвучно, причем получающийся интервал является октавой. Затем он заставил звучать всю струну и 3/4 ее, получив таким образом кварту. Наконец, то же самое было проделано с целой струной и ее 2/3, при этом была получена квинта (Intr. harm. 11, p. 341.12-25).
Гауденций был, разумеется, не первым, кто связывал Пифагора с монохордом: веком раньше его Диоген Лаэрций кратко отмечал, что Пифагор открыл разметку монохорда (VIII, 12), более ранние [696] авторы также упоминают его в связи с монохордом или каноном. Традиция эта восходит как минимум к эпохе эллинизма, отсутствие же прямых эллинистических свидетельств может объясняться тем, что мы не располагаем вообще ни одним музыкальным трактатом этого времени. Не исключено, конечно, что история с монохордом была приписана Пифагору как первооткрывателю математической структуры гармонических интервалов именно в постклассический период, тем более что сам термин ????? впервые встречается в трактате Евклида Sectio canonist [697] Однако на фоне других акустических экспериментов, проводившихся младшими современниками Пифагора, например Ласом из Гермионы или Гиппасом, такое предположение кажется маловероятным. Если Пифагор действительно открыл числовое выражение трех основных интервалов, — а сомневаться в этом как будто нет оснований — то естественней всего полагать, что он сделал это с помощью монохорда. [698] В этом же направлении ведет нас и сама терминология основных музыкальных интервалов, происходящая из геометрического разделения струны. [699]
696
Птолемаида из Кирены (ранее I в. н.э.) ар. Porph. In Ptol. harm. comm. 22. 22; Адраст (I в. н.э.) ap. Theon Sm. Exp., p. 56.10, 57.1-2; Nicom. Intr. harm. VI, p. 243, VII, p. 248.
697
Ясно, впрочем, что за самим трактатом стоит долгая традиция исследований. Баркер датирует изобретение канона IV в. (Barker. Writings, 497 ?. 14).
698
Wantzloeben S. Das Monochord als Instrument und als System. Halle 1911, 4, 11; Burnet, 106; Delatte. Vie, 172; Heath. Mathematics I, 46; Heidel. Science, 182 f; Guthrie I, 222 f; Marrou. Op.cit, 272; Barbera. Persistence, 88 f; van der Waerden, 371 f; Levin. Harmonika, 208; Die Musik des Altertums, ?. Riethmuller, F. Zaminer, Hrsg. Berlin 1988, 182 ff.
699
Szabo. Beginnings, 103 ff, 137 ff; Barbera. Persistence, 92 ff; Riethmuller, Zaminer. Op.cit, 182. Ломан, показавший произвольность многих построений Сабо в области музыкальной теории, тем не менее не отрицает самой связи между теорией пропорций и гармоникой (Lohmann J. Musike und Logos. Stuttgart 1970, 93 f).
Часто высказывается мнение, что еще задолго до Пифагора числовые соотношения основных интервалов должны были эмпирически быть известны мастерам, изготовлявшим музыкальные инструменты. [700] Перестает ли в таком случае открытие Пифагора быть научным открытием? Обессмысливаются ли тем самым акустические опыты его последователей?
Греки в самом деле любили выдумывать ?????? ??????? даже для самых обычных вещей. Но в данном случае мы не можем уйти от того факта, что открытие Пифагора произвело неизгладимое впечатление как на него самого (что выразилось в создании доктрины о небесной гармонии), так и на его учеников и современников. Уже в той настойчивости, с которой Гераклит говорит о «невидимой гармонии», можно видеть отзвуки этого открытия. [701] Пропорции между составляющими человеческого организма ищут Эмпедокл и авторы гиппократовского корпуса. [702] Числа, выражающие гармонические интервалы, составляют известную тетрактиду, засвидетельствованную в акусматической традиции. Наконец, открытие Пифагора стало, по всеобщему мнению, тем стержнем, вокруг которого впоследствии формировалась вся числовая философия пифагореизма с ее пафосом соразмерности и гармонии. «Все познаваемое, конечно же, имеет число, — писал позже Филолай. — Ведь без него нам было бы невозможно что-либо познать или помыслить» (44 В 4). «Если бы мы исключили число из человеческой природы, то никогда не стали бы разумными», — вторил ему автор «Послезакония» (997с). Резонно ли полагать, что камня, от которого разошлось так много кругов, в действительности не было? В какой бы форме ни были известны до Пифагора эти числовые соотношения, научным фактом и элементом научной теории они стали благодаря ему. [703]
700
Van der Waerden, 371; Barker. Writings, 256 ?. 43. Из текста одной из псевдо-аристотелевских «Проблем» (XIX,23) как будто следует, что мастера, изготовлявшие авлосы и так называемые треугольные арфы, руководствовались этими соотношениями. Отражает ли это реальную практику, сказать трудно. Сомнения Буркерта на этот счет кажутся убедительными (Burkert, 374 f). Треугольная арфа с различной длиной струн, для которых соотношение, скажем, 2:1 имело бы смысл, появляется в Греции только во второй половине V в. (Maas S., Snyder J. ?. Stringed Instruments of Ancient Greece. New Haven 1989, 156 f). Рассстояние между отверстиями в авлосах, судя по дошедшему до нас материалу, пифагорейским соотношениям не соответствует: Landeis J. G. The Reconstruction of Ancient Greec auloi, World Archeol. 12 (1980) 298-302.
701
22 В 51, 54. См.: Fraenkel. Op.cit, 321; Minar. Logos, 336 f; Snider J. M. The Harmonia of Bow and Lyre in Heraclitus fr. 5, Phronesis 29 (1984) 91-95; Shipton К. M. W. Heraclitus fr. 10: A Musical Interpretation, Phronesis 30 (1985) 115 ff.
702
31 A 78, В 69, 96-98 (особенно показательны ????? ???????? в В 69). Эмпедокл полагал, что кости, например, состоят из двух частей воды, двух земли и четырех огня (2:2:4), нервы из одной части огня, одной земли и двух воды (1:1:2), а в крови все четыре элемента находятся в равной пропорции. См.: Guthrie II, 211 ff. О музыкальных интервалах в медицинской литературе см.: De victu 1,8; Delatte A. Les harmonies dans Pembriologie hippocratique, Melanges P. Thomas. Bruges 1930, 160-171.
703
Ср.: Barker. Writings, 28.
Прежде
Взглянув на данный опыт под другим углом зрения, можно сказать и так: если соответствующие отношения были известны Пифагору до эксперимента, то он, следовательно, не нашел их, а лишь продемонстрировал. Но большинство экспериментов проводят не для того, чтобы найти нечто, а с целью проверки первоначальной гипотезы, которая, естественно, известна и до эксперимента, — за исключением довольно редких случаев, когда в его ходе находят не то, что искали. Ведь эксперимент не есть некий практический способ удовлетворения любопытства, а один из методов превращения знания вненаучного, в том числе и эмпирического, в знание научное, т. е. теоретическое. [704] И если ответ на вопрос, который ставится природе, как правило, предполагается или даже известен заранее, то это лишь подтверждает гипотетико-дедуктивный характер научной процедуры, подразумевающей проверку (в том числе и опытную) тех следствий, которые логическим путем выводятся из проверяемой теории или гипотезы.
704
В математике таким средством является доказательство, и трудно сомневаться в том, что Пифагору еще до того, как он доказал свою теорему, было известно, что треугольник со сторонами 3, 4, 5 — прямоугольный.
В сущности для истории науки эксперимент Пифагора едва ли не важнее той конкретной закономерности, которая была установлена с его помощью. Но на современников и последователей Пифагора куда большее впечатление произвел тот факт, что вещь, казалось бы, неуловимая — музыкальная гармония — подчиняется простым числовым соотношениям. Хотя арифмология существовала у греков задолго до Пифагора, [705] пифагореизм, несомненно, придал импульс этим представлениям и способствовал их укоренению не только в народных суевериях, но и в «высокой» культуре. Арифмологические спекуляции играют большую роль у Филолая и его ученика Еврита, а затем и у Платона. Правда, стоит заметить, что арифмология коснулась пифагорейцев в очень разной степени. Большинство ранних представителей школы (до Филолая) не проявляли особой предрасположенности к мистике чисел. Какова была позиция самого Пифагора и принадлежат ли ему те странные уподобления: справедливости — четверке, брака — пятерке, здоровья — семерке, которые мы встречаем в акусматической традиции, ответить нелегко. Во всяком случае, ясно, что он сделал шаг в этом направлении, выдвинув идею небесной гармонии, которой подчиняется движение небесных светил. Отсюда очень близко до мысли, что не только природа подчиняется числу, ~ с его помощью можно выразить и такие «неисчисляемые» вещи, как справедливость и здоровье.
705
См., например: Germain G. Homere et la mystique des nombres. Paris 1954.
Как и можно было ожидать, эксперимент Пифагора повлек за собой серию новых, более сложных опытов. Описание одного из них сохранилось у Аристоксена. По его словам, Гиппас «приготовил четыре медных диска таким образом, что диаметры их были равны, а толщина первого диска была на одну треть больше второго, в полтора раза больше третьего и в два раза больше четвертого. Когда по ним ударяли, то получалось некое созвучие» (fr. 90). Мы видим, что Гиппас изготовил диски в соответствии с той же «музыкальной» пропорцией (12:9 = 8:6) и получил те же интервалы, что и Пифагор. Тем самым он показал, что найденные соотношения зависят не от материала звучащего инструмента, а от его размеров, т. е. носят общий характер. Заметим, что опыты Пифагора и Гиппаса представляют собой пример последовательных экспериментов на разном материале и со специально созданными для этого предметами. Подобный тип исследования у греков отрицал даже такой знаток античной науки, как Гейдель, [706] хотя в своей книге о ней он посвятил экспериментам целую главу.
706
Heidel. Science, 192.
Повторяя опыт с теми же пропорциями, Гиппас, судя по всему, интересовался не только математической стороной вопроса. Опираясь на установленную Пифагором зависимость высоты звука от длины струны, Гиппас продвинулся дальше и попытался выяснить, какова физическая природа того, что звуки бывают высокими и низкими. Из пассажа, содержащегося у Теона Смирнского и восходящего, вероятно, к Аристоксену, [707] можно заключить, что этот вопрос, как и физика звука в целом, интересовал Гиппаса:
707
Privitera. Op.cit, 71 ff; Izzo A. Musica e numero da Ippaso ad Archita, Forme di sapere, 143.
?????? ?? ??? ????????? ?? ??? ??? ????? ?????? ?????????, ?? ?? ??? ???????, ?? ?? ??? ???????? ??? ???????, ?? ?? ??? ??????? [??? ???????]. ????? ?? ? ?????????, ?? ????, ??? ?? ???? ??? ???????????? "??????? ??????????? ????? ??????????. ??? ???????? ?? ???? ??? ??? ?????????? ??' ?? ?? ????????? <...> ?? ???????? ????????? ?????? ????????? ????????? ??' ??????? (Theon Sm. Exp., p. 59.4 f). [708]
Лас из Гермионы и Гиппас [709] названы здесь среди тех, кто «получал» гармонические интервалы с помощью ???????? ??? ???????, в частности быстрых и медленных движений. После лакуны в тексте у Теона описывается целая серия экспериментов. Первый из них производится с сосудами, один из которых был пустым, а три других заполненными водою соответственно на половину, четверть и треть. Когда ударяли по пустому и одному из заполненных сосудов, они давали созвучие октавы, кварты и квинты. Далее тому же экспериментатору, имя которого в тексте не названо, приписывается опыт, схожий с Пифагоровым, но не с одной струной, а с двумя, и аналогичный эксперимент с сирингой (Ехр., р. 59.21-60.6). Отметим сразу же, что если производить опыт с сосудами так, как его, описывает Теон, нужный результат не будет достигнут, ибо получающиеся интервалы будут меньше октавы, квинты и кварты. Соответствующие интервалы могут быть получены в том случае, когда будет резонировать столб воздуха, находящийся внутри сосуда. [710] Что касается опыта с двумя струнами, то физически он вполне правилен.
708
Дошедший до нас текст явно не в порядке (Burkert, 377 п. 36). Издатель Теона исключал также ??? ???????, но в этом нет необходимости.
709
?? ???? ??? "??????? здесь, как обычно, означает просто ????????.
710
Cohen & Drabkin. Op.cit, 296 п. 3. В псевдо-аристотелевских «Проблемах» (XIX,50) упоминается сходный эксперимент, причем именно в связи с резонацией (???).