Наука, философия и религия в раннем пифагореизме
Шрифт:
Итак, можно полагать, что Пифагор обратился к исследованию музыкальной гармонии не только из чисто исследовательского интереса, но и в надежде разгадать ее способность воздействовать на человеческую душу. К счастью для него и для всей греческой науки, основные гармонические интервалы оказались подчиненными простым числовым соотношениям. Чтобы установить их, не требовалось особых ухищрений: элементарный расчет показывал, что высота звука обратно пропорциональна длине струны. Трудности начались потом, когда пифагорейцы перешли к физическому толкованию высоты звука, но и здесь они сумели в конце концов приблизиться к верному решению.
Установление пифагорейцами связи между музыкой и математикой повлекло за собой включение гармоники в число математических наук и предопределило все дальнейшее развитие античной науки о музыке. «Античное музыковедение в отличие от современного не ставило своей задачей анализ конкретных музыкальных сторон произведения... Характерной его чертой было стремление к математическому описанию
652
Герцман Е. Античное музыкальное мышление. Ленинград 1986, 16. 8 Barbera. Persistence, passim.
653
Barker A. Music and Perception: A Study in Aristoxenus, JHS 98 (1978) 9-16; Barbera. Persistence, 127 ff; Belis A. Aristoxene de Tarente et Aristote: he Tratte d'harmonique. Paris 1986.
В основе пифагорейских исследований музыкальной гармонии лежала уверенность в том, что ее можно выразить с помощью простых числовых соотношений. Что же заставило Пифагора искать числовые закономерности в природе, что дало непосредственный импульс к поверке гармонии числом? Правдоподобный ответ на этот вопрос дает космологическая модель Анаксимандра, также представляющая собой попытку применения простых числовых соотношений в объяснении видимого мира. Земля Анаксимандра представляет собой плоский цилиндр, диаметр которого в три раза больше его высоты, а расстояние между небесными телами кратно девяти. Числовые соотношения Анаксимандра были, конечно, чисто спекулятивного происхождения и ни в коей мере не отражали реальной структуры космоса, [654] но в эвристическом плане его идеи могли дать импульс для поисков в природе более точных и выверенных отношений.
654
Сходные идеи мы встречаем еще задолго до рождения философии и науки, например в «Теогонии» Гесиода (720 ff), где расстояние между небом, землей и подземным миром также кратно девяти.
Геометрический космос Анаксимандра — это лишь один из примеров господствовавших тогда представлений, в которых отражается столь присущая мировосприятию греков любовь к симметрии, нашедшая яркое выражение в их архитектуре и скульптуре. Разумеется, греческая культура была в этом отношении отнюдь не уникальна. Ее особенность состоит лишь в том, что представления о числовом порядке и геометрической симметрии проявились в ней не только в мифах, фольклоре или арифмологии, но и в зарождающейся науке. Для современника Пифагора Гекатея Милетского тоже характерно стремление уложить доступные грекам географические знания в прокрустово ложе симметричных схем. [655] В греческой медицине мы также наблюдаем поиски неких числовых соотношений, например пропорций пищи по отношению к физическим упражнениям (De victu. 1,2). В гиппократовском трактате «О седмерицах» число семь служит своеобразным структурным принципом, способным организовать все многообразие мира в простую схему.
655
Krafft F. Geschichte der Naturwissenschaft I. Freiburg 1971, 168 ff.
Попытки Пифагора найти числовую основу музыкальной гармонии лежат, таким образом, в основном русле развития тогдашних отраслей знания — астрономии, географии, медицины. Разница заключается лишь в том, что, в отличие от медицины, в музыке числовые отношения действительно существуют, а найти их с помощью доступных пифагорейцам методов оказалось гораздо проще, чем в астрономии.
Что представляла собою гармоника в период между Пифагором и Архитом? Свидетельств на этот счет весьма мало, но и они позволяют проследить некоторые линии ее развития. Пифагор установил, какие числовые соотношения, в соответствии с длиной струны, выражают наиболее устойчивые гармонические интервалы. Октава была выражена через отношение 12:6 (2:1), кварта — 12:9 (4:3) и квинта — 12:8 (3:2). Все эти числа образуют уже знакомую нам «музыкальную» пропорцию (12:9 = 8:6), в которой 8 является средним гармоническим, а 9 средним арифметическим между двумя крайними членами. [656] Характерно при этом, что числа, выражающие первые
656
См. выше, IV,2.3.
Деление октавы на квинту и кварту (2:1 = 3/2 : 4/3) было, вероятно, известно уже Пифагору. Установление того факта, что октава не может быть разделена на две равные части, ибо геометрическое среднее между входящими в нее числами равно \/2, следует связывать с Гиппасом, открывшим иррациональность; К найденным Пифагором трем интервалам Гиппас, по свидетельству Боэция (18 А 14), добавил еще два: двойную октаву (4:1) и дуодециму, состоящую из октавы и квинты (3:1). [657] Оба новых интервала по-прежнему выражались с помощью первых четырех чисел. Именно эти пять интервалов, по словам Птолемея (Harm. 1,5, р. 11 ff), пифагорейская теория музыки признавала созвучными, оставляя в стороне другие, например ундециму (8:3). [658] Весьма вероятно, что именно Гиппас исключил ундециму из числа созвучных интервалов. [659]
657
См.: Zaminer F. Konsonanzordnung und Saitenteilung bei Hippasos von Metapont, JSIM (1980/81) 231-240.
658
Поскольку Архит (47 А 16) признавал еще и терции, можно полагать, что у Птолемея речь идет о пифагорейской гармонике V в.
659
См.: Barbera A. The Consonant Eleventh and the Expansion of Musical Tetractys: A Study of Ancient Pythagoreanism, JMT 28 (1984) 101-223.
Теоретическим обоснованием этого служил, разумеется, не только тот факт, что ундецима не укладывалась в рамки тетрактиды. Судя по свидетельствам Птолемея и Боэция (18 А 14), [660] пифагорейская гармоника во времена Гиппаса представляла собой уже развитую теорию. Ноты одинаковой высоты сравнивались в ней с равными числами, а разной высоты с неравными. Все числа при этом должны были быть целыми. Тона неравной высоты делились на симфонные (созвучные), т. е. такие, которые сливаются при одновременном появлении, и диафонные, которые, хотя и признавались музыкальными, к созвучным не относились. С симфонными интервалами сравнивались числа, состоящие друг с другом в двух типах отношений: эпиморных и кратных.
660
Эта часть «Наставления к музыке» Боэция (II,19) представляет собой перевод не дошедшего до нас трактата Никомаха.
Эпиморным называлось отношение чисел ? и 6, в котором а равно b плюс часть b (а = b + b/n), следовательно, а:b = (n + 1) : n. Этому соотношению удовлетворяют, например, кварта (4:3) и квинта (3:2). Кратным же отношением считалось такое, при котором b является частью а (а = nb), следовательно, а:b = n:1. Под это соотношение, которое пифагорейцы признавали наилучшим, подходит, например, октава (2:1) или дуодецима (3:1). В то же время ундецима (8:3) вообще не считалась симфонным интервалом, так как ее отношение не является ни эпиморным, ни кратным.
При разделении интервалов использовались арифметическое и гармоническое среднее, т. е. интервалы делились на неравные части. Например, октава делилась на квинту и кварту, разница между которыми составляла целый тон. Из величин, входящих в «музыкальную» пропорцию, можно было установить числовые соотношения более мелких интервалов. Если разница квинты и кварты дает целый тон (3/2 : 4/3 = 9/8), то, в свою очередь, вычитая из кварты два тона, мы получаем малый полутон: 12:9 — 2(9:8) = 256:243, а вычтя его из целого тона, — большой полутон, так называемую апотоме (2187:2048). Именно эти соотношения мы встречаем у Филолая (44 В 6), суммировавшего (а возможно, и самостоятельно развившего) предшествующую ему школьную традицию.
Архит, завершивший развитие пифагорейской гармоники, доказал в общем виде невозможность нахождения рационального среднего геометрического между числами n? + 1 и n, находящимися в эпиморном отношении (47 А 19), и тем самым, невозможность разделения эпиморных интервалов на равные части. [661] С помощью соответственно арифметического и гармонического среднего он разделил квинту и кварту следующим образом:
квинта = большая терция + малая терция (3/2 = 5/4 : 6/5);
661
Becker. Mathematik und Musiklehre, 159 ff.