Анатомия стиральных машин
Шрифт:
Для начала также проинформируем читателя о том, что множество моделей СМА, хотя и имеют разные названия и внешний вид, собраны по совершенно одинаковым схемам и из одинаковых деталей. Например: СМА группы Candy выпускаются для торговли в разных странах под разными торговыми марками (названиями). Это «Otsein», «Rosieres», «Zerowatt», «lberna», «Kelvinator», «Hoover», «Gasfire», «Вауег», «Vendome» и даже «General Electric» и под многими другими. Точно также скрываются и близнецы под маркой
В приложении приведены электросхемы СМА разных производителей. Самые простые СМА имеют в составе своей электросхемы асинхронный мотор и регулируемый термостат для установки и поддержания температуры воды в баке.
Наиболее часто встречающиеся неисправности в подобных СМА: неисправность блокировочного термозамка, перегорание ТЭНа или срабатывание его защиты, перегорание или обрыв обмотки клапана подачи воды, перегорание обмотки сливного насоса-помпы, дефекты электромеханических командоаппаратов-программаторов.
Допустим, в СМА перегорел ТЭН. При включении вода подается и заливается до необходимого уровня, блокируется замок загрузочного люка и барабан с бельем начинает вращаться, однако на момент включения режима нагрева СМА останавливается и перестает подавать признаки «жизни», только продолжает гореть индикаторная лампа включения. Если ручку установки температуры вывести в начальное положение (режим стирки без нагрева — в холодной воде), то СМА «оживает»: начинают вращаться синхромотор программатора и ведущий мотор (барабан с бельем). Дело в том, что большинство электросхем с регулируемым термостатом построены таким образом, что напряжение питания на синхромотор программатора подается только после того, как вода в баке нагревается до 30 °C.
Следующий типовой дефект — выход из строя обмотки клапана подачи воды. Допустим, обмотка сгорела на этапе последнего набора воды при полоскании. Это значит, что программа стирки благополучно завершится, а дефект проявится только при следующем включении. В этом случае СМА невозможно будет включить, т. е. индикаторная мембрана загорится, но больше ничего не произойдет. Если переключить программатор в режим отжима, то можно будет услышать, как заработает сливной насос, начнет вращаться барабан и программа закончится. Набора (подачи) воды не будет также и при следующем типовом дефекте: при перегорании обмотки сливного насоса. Дело в том, что во многих электросхемах СМА обмотка клапана подачи воды и обмотка сливного насоса в режиме набора воды включаются последовательно. Как мы знаем, сопротивление обмотки клапана примерно 3,5 кОм, а сопротивление обмотки насоса 170–200 Ом.
При подаче напряжения питания на такую цепь клапан включится, только если обмотка насоса исправна. При этом большая часть напряжения будет приложена к обмотке клапана, а оставшейся части напряжения будет недостаточно, чтобы насос заработал. В режиме отжима на обмотку насоса будет подаваться полное напряжение питания. Таким образом, при обрыве (перегорании) обмотки сливного насоса не будет происходить набора воды и не будет производиться откачка воды из бака. Ведущий мотор при этом будет вращаться. На рис. 16.3,б показан фрагмент включения обмоток клапана и насоса.
Рис. 16.3. Разряд
Еще одна типовая неисправность — это отказ блокировочного термозамка. Как мы уже знаем, этот замок имеет две функции: блокировать загрузочный люк и обеспечивать прохождение напряжения питания на основную часть электросхемы СМА.
В замок также могут попасть вода или пена. При этом в замке может выйти из строя термоэлементы (РТС-резистор) либо могут подгореть контакты, через которые подается напряжение питания на электросхему. В последнем случае СМА можно будет включить. Произойдет набор воды, заблокируется люк, и далее программа стирки будет проходить по всем пунктам, как положено, но не будет вращаться ведущий мотор (а следовательно, и барабан — с бельем).
Все электросхемы СМА, приведенные в приложении, являются так называемыми базовыми — то есть отличия от схем конкретных моделей могут быть лишь в наличии или в отсутствии некоторых опций — таких как, например, дополнительное полоскание, остановка с водой, слив воды без отжима и т. п.
Все вышеперечисленные дефекты характерны и для СМА, собранных и по другим схемам, так как в этих СМА точно также может выйти из строя термозамок, ТЭН, насос. В случае бросков напряжения или в случае попадания воды сможет выйти из строя и электронный модуль. Электронные модули бывают трех видов: 1 — отдельные модули для управления моторами, 2 — модули, совмещенные с командоаппаратом-программатором и 3 — модули, полностью электронные.
О ремонте электроники написаны горы книг, есть общие методы ремонта. Поэтому мы не будем повторяться, а остановимся на главных моментах. Из практики известно множество случаев выходов из строя электронных модулей различных типов, и практика показала, что далеко не все модули окончательно выходят из строя.
Очень многие из них можно и отремонтировать. Конечно, для этого необходимы базовые знания по электронике и умение обращаться с измерительными приборами. Но также довольно часто можно отремонтировать электронный модуль, зная некоторые подробности его устройства и некоторые признаки работы СМА с неисправным модулем. Конечно, если видно, что плата модуля прогорела основательно, то не стоит браться за ремонт — это невыгодно со всех точек зрения.
Если видно, что повреждения незначительны — допустим, сгорел предохранитель сгорел один из симисторов, или печатный проводник на плате, или вообще повреждений не видно невооруженным глазом — можно попытаться отремонтировать такой модуль. Если перегорел предохранитель — новый нужно ставить на такой же ток, как и прежний. В случае отсутствия готовых предохранителей их можно изготовить самостоятельно из кусочка многожильного провода типа МГТФ. Жилки в этом проводе имеют диаметр 0,05 мм, что очень удобно. Новый предохранитель изготавливают, пользуясь табл. 16.1.
Таблица 16.1. Расчет самодельного предохранителя
Тип плавления, а … Медь
1… 0,053
2… 0,086
3… 0,112
5… 0,157
7… 0,203
10… 0,250
Как правило, на входе напряжения питания (в цепи) всегда установлен защитный варистор.
Металл-оксидные варисторы — это полупроводниковые приборы с особой вольт-амперной характеристикой. Основная функция варистора — защита электронных схем от перенапряжения. В эту функцию входит закорачивание потенциала, переходящего определенный порог. Варистор поглощает высоковольтные скачки напряжения.