Чтение онлайн

на главную - закладки

Жанры

Сто лет недосказанности: Квантовая механика для всех в 25 эссе
Шрифт:

Из этих правил среди прочего видно, что всегда найдется такое направление в пространстве, что заданное спиновое состояние электрона с математической точностью перепишется как состояние «вперед» вдоль этого конкретного направления. Это позволяет нам думать, что у каждого электрона, пока его никто не трогает, есть какое-то определенное значение спина – вдоль неизвестного нам направления, но оно есть. Слишком больших проблем с наглядностью и интуитивными представлениями пока не возникает.

Однако все меняется, когда в дело вступает запутанность. Она настойчиво стучалась почти в каждую из предшествующих глав (отчасти вопреки первоначальному плану автора – тем самым еще раз подтверждая свою фундаментальную

роль). Запутанность, как мы, в общем, уже видели, – это развитый вариант того «комбинирования» возможностей (суперпозиции в стандартной терминологии), которое лежит в самой основе квантовой механики, но вариант с вовлечением нескольких участников – частиц или просто частей/подсистем. В 1935 г., когда эта идея впервые появилась в статье Эйнштейна, Подольского и Розена (см. главу 6), она воспринималась как достаточно экзотическое свойство, указывавшее по их замыслу на неполноту квантовой механики. Не прошло и пятидесяти лет, как было осознано, что она представляет собой фундаментальное и повсеместное свойство природы.

Запутанность возникает в результате взаимодействия как минимум двух частей, а адекватный язык для описания всего, что с ней связано – волновые функции/состояния. Она выражает необычное взаимоотношение частей и целого: состояние системы в целом полностью определено, но про состояния ее частей ничего определенного сказать нельзя. От такого рода неопределенности и страдает кошка, честно следующая уравнению Шрёдингера в соседстве с адской машиной, запускаемой квантовым образом. Но чтобы не нагромождать лишнего и увидеть запутанность «как она есть», будем тренироваться все-таки не на кошках, а на электронах.

В практическом плане, кстати, намного более популярны не запутанные электроны, а запутанные (тоже по спину) фотоны. Со спином фотонов мы встречаемся в обычной жизни, потому что он проявляет себя как поляризация света; для нее есть две опорные возможности, например «горизонтальная» и «вертикальная» поляризации. Для управления поляризацией имеются разнообразные оптические устройства. Создаются же запутанные фотоны примерно по следующей схеме: в специально подобранном атоме электрон поглощает «затравочный» фотон с определенной энергией/длиной волны, в результате чего он (электрон) занимает состояние с более высокой энергией, но очень скоро отдает избыток энергии – снова в виде света, но только в виде не одного фотона, а двух! Сначала электрон переходит в состояние с промежуточной энергией, а уже оттуда быстро возвращается в свое исходное. Каждое изменение состояния сопровождается излучением фотона. В результате картина получается такой: вещество (обычно это кристалл) поглощает фотон определенной энергии и возвращает два фотона примерно «половинной» энергии каждый. Существенная дополнительная подробность состоит в том, каковы «вращательные» характеристики задействованных здесь состояний электрона в атоме. В главе 4 мы говорили, что в каждом состоянии электрон в атоме обзаводится определенными атрибутами вращения; сейчас важно, что спин излучаемых фотонов участвует в общем балансе сохранения связанных с вращением величин. Состояния выбраны так, что суммарный спин излученных фотонов равен нулю. По отдельности, однако, спины больше ничем не контролируются. Это и означает запутанность по спину.

Запутанное состояние двух электронов создать технически сложнее, но тоже возможно (например, интересным методом «переноса запутанности»: каждый из электронов излучает по фотону таким образом, что запутывается с этим фотоном, а далее специальная процедура измерения, которой подвергаются два фотона, реорганизует запутанность так, что она «высаживается» на электроны). Технологические усовершенствования продолжают появляться, и запутывать удается все более крупные молекулы, но в фокусе нашего внимания сейчас не технологии (которые могли бы стать предметом отдельного рассказа), а принципиальные моменты; мы будем в основном представлять себе электроны.

Запутанное (точнее,

максимально запутанное) по спину состояние двух электронов – это комбинация двух частей:

«(спин вверх, спин вниз) минус (спин вниз, спин вверх)».

В каждой скобке сначала указано спиновое состояние электрона № 1, а затем – электрона № 2. Минус, соединяющий две части волновой функции, можно при желании не отличать от плюса, который почти всегда появлялся в подобных выражениях в предыдущих главах, – различия есть (знак плюс приводит к некоторым математическим усложнениям), но совершенно вторичны с интересующей нас сейчас точки зрения; я продолжу использовать минус, чтобы волновая функция в моем пересказе ничем не отличалась от настоящей, математической.

Глядя на это состояние двух электронов, о спине электрона № 1 нельзя сказать, направлен ли он вверх или вниз; волновая функция содержит обе эти возможности. В точности то же верно и в отношении электрона № 2. Но при этом спины двух электронов коррелируют: в каждой из двух частей волновой функции их спины противоположны.

Это очень неклассическая ситуация: организовать что-либо подобное с обычными предметами невозможно. Развлеките гостей нехитрым фокусом: в двух коробках лежит по игральной кости; открывая коробки, они обнаружат, что две кости смотрят вверх противоположными гранями: если на одной 1, то на другой 6, если на одной 2, то на другой 5, а если на одной 3, то на другой 4. При подготовке «фокуса» вам придется выбрать какую-то из возможностей уже в момент помещения костей в коробки; значения, которые показывает каждая кость, будут определены. Они могут быть не известны никому, кроме вашей подруги, разложившей кости по коробкам; но даже если она об этом забыла (или оказалась вне зоны действия сети, не говоря уже о чем-нибудь еще), они все равно определены.

В квантовом же мире в действительности выполнено даже нечто намного более впечатляющее, чем с первого взгляда видно из приведенной выше записи запутанного состояния. Оттуда может показаться, что неопределенность в спинах включает только выбор между «вверх» и «вниз». Однако неопределенность в полной мере распространяется и на направление! Математика спиноров сообщает, что приведенное выше максимально запутанное состояние двух электронов можно эквивалентно выразить многими другими способами, для начала – как

«(спин влево, спин вправо) минус (спин вправо, спин влево)».

Здесь записано математически то же самое состояние, что и выше, просто в качестве опорного направления выбрано горизонтальное слева направо. Но и это горизонтальное направление ничем не выделено. То же самое состояние можно записать в виде

«(спин вперед, спин назад) минус (спин назад, спин вперед)»

относительно совершенно любого направления в пространстве. Про индивидуальные спины обоих электронов, другими словами, тут нельзя сказать совсем ничего – кроме того, что эти спины в точности противоположны друг другу.

Картина становится особенно интересной, когда эти два электрона удаляются друг от друга. В том, как выше записана совместная волновая функция двух электронов, нет никаких указаний на их пространственное расположение, но в том-то и дело, что запутанность по спину ничего не знает о положении в пространстве. Мы можем полагать что угодно, например, что два электрона разлетаются в противоположные стороны и уходят достаточно далеко для того, чтобы взаимодействие между ними отсутствовало. Здесь и начинается то самое, что изумляло Эйнштейна с соавторами, а затем и Шрёдингера: взаимодействия нет, но электроны откликаются на возможные измерения над ними согласованно!

Поделиться:
Популярные книги

Адвокат вольного города 3

Кулабухов Тимофей
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 3

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец

Сумеречный Стрелок 10

Карелин Сергей Витальевич
10. Сумеречный стрелок
Фантастика:
рпг
аниме
фэнтези
5.00
рейтинг книги
Сумеречный Стрелок 10

Хильдегарда. Ведунья севера

Шёпот Светлана Богдановна
3. Хроники ведьм
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Хильдегарда. Ведунья севера

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

Избранное. Компиляция. Книги 1-11

Пулман Филип
Фантастика:
фэнтези
героическая фантастика
5.00
рейтинг книги
Избранное. Компиляция. Книги 1-11

Игрушка богов. Дилогия

Лосев Владимир
Игрушка богов
Фантастика:
фэнтези
4.50
рейтинг книги
Игрушка богов. Дилогия

Свадьба по приказу, или Моя непокорная княжна

Чернованова Валерия Михайловна
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Свадьба по приказу, или Моя непокорная княжна

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия

Надуй щеки! Том 3

Вишневский Сергей Викторович
3. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 3